GSOE9210 Engineering Decisions

Victor Jauregui
vicj@cse.unsw.edu.au
www.cse.unsw.edu.au/~gs9210

Probability

(1) Measuring uncertainty

- Probability

Outline

(1) Measuring uncertainty

- Probability

The ontology of uncertainty

Example (Tossing a coin)

After a coin is tossed, the top-most face may be 'heads' or 'tails'.

- Tossing a coin is a random process or chance experiment
- Each toss of the coin corresponds to a trial of the experiment
- 'Heads' is one among the experiment's possible individual outcomes
- 'Tossing heads' is an observable event

The ontology of uncertainty

Example (Rolling a die)

After a die is rolled, the top-most face may be any of a one, two, ..., six.

- Observable events include rolling a six; a three; an even number; a number greater than two
- Its not always the case that individual outcomes can be observed; e.g., experimental error

The ontology of uncertainty

In a decision problem:

- Each state (of nature) and outcome/consequence in a decision problem corresponds to an event
- States and outcomes are assumed to be mutually exclusive
- Experimental data and observations can provide information about 'likelihoods' of certain events (states/outcomes)
- Likelihood estimates may be objective or subjective, and may change depending on the agent's epistemic state

Frequency interpretation of probability

Outcomes:

$$
\underbrace{t, h, h, t, t, h, t}_{n}, h, t, h, \ldots
$$

Definition (Frequency interpretation of probability)

The probability of an event, E, in an experiment of chance, is the limit of the average occurrences of E over any sequence of indefinitely many trials; i.e.,

$$
P(E)=\lim _{n \rightarrow \infty} \frac{n_{E}}{n}
$$

where n_{E} is the number of occurrences of event E in the first n trials.

- e.g., For event $H: \frac{0}{1}, \frac{1}{2}, \frac{2}{3}, \frac{2}{4}, \frac{2}{5}, \frac{3}{6}, \frac{3}{7}, \ldots, \frac{n_{H}}{n}, \ldots$
- What is $P(H)$ for this experiment?

Bayesian interpretation

- The frequency interpretation assumes repeatable experiments/processes
- It is objective: a fixed property of the underlying random process/system; the same for every agent irrespective of the particular sequence of trials or of the epistemic state of the agents
- Problem: What is the 'probability' that Germany will win the 2018 football world cup?

Definition (Bayesian probability)

Probability is an agent's subjective degree of belief in the occurrence of an event.

- An agent's subjective probability depends on the agent's epistemic state (knowledge and beliefs)

Set operations

Assume $A, B \subseteq \Omega$.

- The intersection of sets A and B, written $A \cap B$ (or just $A B$), is the set of all elements common to both A and B; i.e.,

$$
A \cap B=\{x \in \Omega \mid x \in A \& x \in B\}
$$

- The union of sets A and B, written $A \cup B$, is the set of all elements in either A or B or both; i.e., $A \cup B=\{x \in \Omega \mid x \in A$ or $x \in B\}$

- The complement of a set A, written \bar{A}, is the set of all elements in Ω that are not in A; i.e.,
$\bar{A}=\{x \in \Omega \mid x \notin A\}$

Set operations

Definition

The set difference of A and B, written $A \backslash B$, is the set of all elements in A but not in B; i.e., $A \backslash B=\{x \in \Omega \mid x \in A \& x \notin B\}$.

Note that $\bar{A}=\Omega \backslash A$.

Exercise

Show that:

- $A \backslash B=A \cap \bar{B}$
- $\overline{A \cup B}=\bar{A} \cap \bar{B}$
- $A \cap \Omega=A$
- $\overline{A \cap B}=\bar{A} \cup \bar{B}$
- $A \cap \varnothing=\varnothing$
- $A \cup \Omega=\Omega$
- $A(B \cup C)=(A B) \cup(A C)$
- $A \cup \varnothing=\varnothing$

Set defintions

Definition

Sets A and B are disjoint iff $A \cap B=\varnothing$.

Exercise

Show that for sets A and B :

- they are disjoint (i.e., $A \cap B=\varnothing$) iff $A \subseteq \bar{B}$
- $A \subseteq B$ iff A and \bar{B} are disjoint
- Show that A and \bar{A} are disjoint
- $A \backslash B, A B$, and $B \backslash A$ are all (pair-wise) disjoint

Cardinality and counting

Definition (Cardinality)

The cardinality of a set A, written $|A|$, is the magnitude of A; for finite A this is the number of elements of A.

Examples: if $A=\{2,4,7\}$, then $|A|=3$. The set of positive square numbers less than 20 has cardinaity 4 .

Definition

Sets A and B are said the be equinumerous, written $A \cong B$, iff there is a one-to-one correspondence from A to B. By definition $|A|=|B|$ iff $A \cong B$.

Exercise

What is $|\varnothing| ? \mid\left\{n \in \mathbb{N} \mid 0<n^{2}<2013 \& n\right.$ is even $\} \mid$? Show that $\mathbb{N} \cong\{1,4,9,16, \ldots\}$.

Counting

Cardinal properties

- If A and B are disjoint, then $|A \cup B|=|A|+|B|$
(Sum rule)
- $|A \times B|=|A| \times|B|$
(Product rule)

Exercise

Show that:

- the set of binary sequences of length $n,\{0,1\}^{n} \cong \mathbb{P}(\{1, \ldots, n\})$
- in general, for any A and $B,|A \cup B|=|A|+|B|-|A \cap B|$

Victor Jauregui Engineering Decisions

Properties

Exercises

Show that:

- If $B \subseteq A$, then $|A \backslash B|=|A|-|B|$ and $|B| \leqslant|A|$
- Verify that for any set $A,|A| \geqslant 0$
- $A \cup B=(A \backslash B) \cup(A \cap B) \cup(B \backslash A)=A \bar{B} \cup A B \cup \bar{A} B$
- What region in the diagram represents $\bar{A} \cap \bar{B}$?
- $A \backslash B$ and $A \cap B$ are disjoint

Counting example

Example (Seats)

Seats in a small auditorium are labelled by a row letter
$L=\{A, B, C, D, E\}$, and a seat number $N=\{1, \ldots, 10\}$.

Exercise

How many seats are there in total?

Probability ontology

Definition (Conjunction event)

The conjunction of the events corresponding to $A, B \subseteq \Omega$ is the event that occurs when both A and B occur simultaneously; i.e., it corresponds to $A \cap B$.

Definition (Disjunction event)

The disjunction of the events corresponding to $A, B \subseteq \Omega$ is the event that occurs when one or both A and B occur; i.e., it corresponds to $A \cup B$.

Definition (Negation event)

The negation of the event corresponding to $A \subseteq \Omega$ is the event that occurs when A and doesn't occur; i.e., it corresponds to \bar{A}.

Probability language

Definition (Mutually exclusive events)

The events corresponding to $A, B \subseteq \Omega$ are mutually exclusive, or incompatible, if A and B are disjoint.

Example: rolling a three an rolling an even number; $T=\left\{s_{3}\right\}$ and $E=\left\{s_{2}, s_{4}, s_{6}\right\}$.

Definition (Impossible and certain events)

An event is impossible if it corresponds to \varnothing. An event corresponding to Ω is certain.

Corollary

Two events A and B are incompatible iff their conjunction is impossible.

Victor Jauregui Engineering Decisions

Measuring uncertainty Probability

Finite probability

Definition (Laplace)

For an experiment whose outcome space Ω consists of finitely many equally likely outcomes, the probability of event $E \subseteq \Omega$ is the ratio of the event's outcomes to the total possible outcomes; i.e.:

$$
P(E)=\frac{|E|}{|\Omega|}
$$

Exercise

What is the probability of 'rolling a six'? Of rolling an even number? A multiple of three? A number greater than two? An even number greater than two? An even number or a number greater than two?

Finite probability properties

Exercises

Show that for Laplace's definition of probability:

- $P(\Omega)=1$
- $P(A) \geqslant 0$, for any event $A \subseteq \Omega$
- if A and B are mutually exclusive events then
$P(A \cup B)=P(A)+P(B)$
- $P(\bar{A})=1-P(A)$
- if A and B are not mutually exclusive then
$P(A \cup B)=P(A)+P(B)-P(A B)$
If Ω is not finite, or the possible outcomes are not equally likely, then the probability assignment $P(E)=\frac{|E|}{|\Omega|}$ is no longer meaningful.

Probability properties

Exercise

Verify that for any probability function f :

- $f(\varnothing)=0$
- $f(\bar{A})=1-f(A)$
- $f(A \cup B)=f(A)+f(B)-f(A B)$

Exercise

Verify that for any probability function f, if $A \subseteq B$, then $f(A) \leqslant f(B)$.

Conditional probability

Example (Dice)

For a fair die, consider the events:

- $E=\left\{s_{2}, s_{4}, s_{6}\right\}$-an even number
- $F=\left\{s_{4}, s_{5}, s_{6}\right\}$-a number greater than three
- $P(E)=\frac{|E|}{|\Omega|}=\frac{3}{6}=\frac{1}{2}$
- If we learn that a number greater than three was rolled then our new outcome space is $\Omega^{\prime}=F=\left\{s_{4}, s_{5}, s_{6}\right\}$. Moreover, $E^{\prime}=\left\{s_{4}, s_{6}\right\}$. So $P_{F}\left(E^{\prime}\right)=\frac{\left|E^{\prime}\right|}{\left|\Omega^{\prime}\right|}=\frac{\left|\left\{s_{4}, s_{6}\right\}\right|}{\left\{s_{4}, s_{5}, s_{6}\right\} \mid}=\frac{2}{3}$.
But $E^{\prime}=E \cap F=E F$ and $\Omega^{\prime}=\Omega \cap F=F$. Hence $P_{F}\left(E^{\prime}\right)=\frac{P(E F)}{P(F)}$.
- Note here that $P_{F}\left(E^{\prime}\right)>P(E)$

Conditional probability

Definition

The conditional probability of event A conditional on B (where $P(B) \neq 0)$, written $P(A \mid B)$, is defined by:

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}
$$

In the diagram above, $P(A \mid B)$ represents the ratio of (the area of) the region $A B$ (the dark region) to that of the whole of B.

Conditional probability

Exercise

For the dice example earlier:

- What is $P(E \mid F)$?
- $P(F \mid E)$?
- Let G be the event: 'The number three is rolled'. Describe the event \bar{G} in words
- What are $P(E \mid \bar{G})$ and $P(\bar{G} \mid E)$?

Exercises

In general, for any events A, B :

- Is $P(A \mid B)=P(B \mid A)$ necessarily true?
- Is $P(A \mid B)+P(\bar{A} \mid B)=1$?
- Is $P(A \mid B)+P(A \mid \bar{B})=1$?

Conditional independence

Definition

Event A is (conditionally) independent of event B if:

$$
P(A \mid B)=P(A)
$$

Event A is (conditionally) dependent on B if A is not (conditionally) independent of B.

For example, if B is a random sample of a population.

Conditional independence

Exercises

- If A is conditionally independent of B is B necessarily conditionally independent of A ?
- Is rolling an even number independent of rolling a number greater than three?
- Prove that if A is conditionally independent of B then $P(A B)=P(A) P(B)$.

Bayes's rule

- Rearranging the definition of conditional probability:

$$
P(A \cap B)=P(A \mid B) P(B)
$$

- By symmetry $P(A \cap B)=P(B \cap A)$; therefore: $P(A \mid B) P(B)=P(B \mid A) P(A)$.
Rearranging this equation gives:
Theorem (Bayes's Theorem I)
If A and B are any two events $(P(A) \neq 0)$, then:

$$
P(B \mid A)=\frac{P(A \mid B) P(B)}{P(A)}
$$

Bayes's Venn diagram

But $A=A B \cup A \bar{B}$. So we get the following:
Theorem (Bayes's Theorem I')
If A and B are any two events $(P(A) \neq 0)$, then:

$$
P(B \mid A)=\frac{P(A B)}{P(A B)+P(A \bar{B})}
$$

Extending Bayes's rule

$$
\begin{aligned}
P\left(B_{1} \mid A\right) & =\frac{P\left(A B_{1}\right)}{P\left(A B_{1}\right)+P\left(A B_{2}\right)+P\left(A B_{3}\right)} \\
P\left(B_{2} \mid A\right) & =\frac{P\left(A B_{2}\right)}{P\left(A B_{1}\right)+P\left(A B_{2}\right)+P\left(A B_{3}\right)} \\
P\left(B_{3} \mid A\right) & =\frac{P\left(A B_{3}\right)}{P\left(A B_{1}\right)+P\left(A B_{2}\right)+P\left(A B_{3}\right)}
\end{aligned}
$$

Bayes's rule generalised

Events B_{1}, \ldots, B_{n} are said to be universally exhaustive (of Ω) if $\bigcup_{i=1}^{n} B_{i}=\Omega$.
Theorem (Bayes's Theorem II)
If $B_{1}, \ldots, B_{k}, \ldots, B_{n}$ are mutually exclusive and universally exhaustive events and A is a possible event $(P(A) \neq 0)$ then:

$$
P\left(B_{k} \mid A\right)=\frac{P\left(A B_{k}\right)}{\sum_{i=1}^{n} P\left(A B_{i}\right)}
$$

Theorem (Bayes's Theorem II')
If $B_{1}, \ldots, B_{k}, \ldots, B_{n}$ are mutually exclusive and universally exhaustive events and A is a possible event $(P(A) \neq 0)$ then:

$$
P\left(B_{k} \mid A\right)=\frac{P\left(A \mid B_{k}\right) P\left(B_{k}\right)}{\sum_{i=1}^{n} P\left(A \mid B_{i}\right) P\left(B_{i}\right)}
$$

Victor Jauregui Engineering Decisions

Measuring uncertainty Probability

Bayes's rule example

Example (Medical diagnostics)

In a given population of people, one in every thousand have cancer. A certain pathology test is used to detect the disease. The test is 'good' but not perfect; it returns a positive result for someone with the disease about 98% of the time, and registers a false positive (i.e., gives a positive result for a person free of the disease) 5% of the time.

Exercise

A random person comes in to get tested and the test returns a positive result. What is the probability that the person has cancer?

Example: solution

Given information:

$$
\begin{array}{ll}
P(C)=\frac{1}{1000} & P(\bar{C})=\frac{999}{1000} \\
P\left(T^{+} \mid C\right)=\frac{98}{100} & P\left(\overline{T^{+}} \mid C\right)=\frac{2}{100} \\
P\left(T^{+} \mid \bar{C}\right)=\frac{5}{100} & P\left(\overline{T^{+}} \mid \bar{C}\right)=\frac{95}{100}
\end{array}
$$

Calculate $P\left(C \mid T^{+}\right)$.

$$
\begin{aligned}
P\left(C \mid T^{+}\right) & =\frac{P\left(C T^{+}\right)}{P\left(T^{+}\right)}=\frac{P\left(C T^{+}\right)}{P\left(C T^{+} \cup \bar{C} T^{+}\right)}=\frac{P\left(C T^{+}\right)}{P\left(C T^{+}\right)+P\left(\bar{C} T^{+}\right)} \\
& =\frac{P\left(T^{+} \mid C\right) P(C)}{P\left(T^{+} \mid C\right) P(C)+P\left(T^{+} \mid \bar{C}\right) P(\bar{C})} \\
& =\frac{\frac{98}{100} \times \frac{1}{1000}}{\frac{98}{100} \times \frac{1}{1000}+\frac{5}{100} \times \frac{999}{1000}}=\frac{98}{98+5 \times 999} \approx \frac{100}{5000}=0.02
\end{aligned}
$$

Patient only has 2% chance of having cancer despite testing positive?!

Victor Jauregui Engineering Decisions

Expected value

Example (Three coins)

Consider the experiment of tossing three coins simultaneously; i.e., $\Omega=$ $\{h, t\} \times\{h, t\} \times\{h, t\}=\{h, t\}^{3}=\{h h h, h h t, h t h, h t t, t h h, t h t, t t h, t t t\}$. Let $N_{H}(\omega)$ be the number of heads in outcome ω; e.g.,

$$
\begin{array}{ll}
N_{H}(h t h)=N_{H}(h h t)= & N_{H}(t h h)=2 \\
N_{H}(t t t)=0 & N_{H}(h h h)=3 .
\end{array}
$$

In general $N_{H}(\omega) \in\{0, \ldots, 3\}$. Let X_{k} be the event of tossing k heads.

$$
\begin{aligned}
& X_{0}=\{t t t\}, X_{1}=\{h t t, t h t, t t h\}, \\
& X_{2}=\{h h t, h t h, t h h\}, X_{3}=\{h h h\} .
\end{aligned}
$$

Hence:

$$
\begin{aligned}
E(h) & =\frac{1}{8}(0)+\frac{1}{8}(1)+\frac{1}{8}(1)+\frac{1}{8}(1)+\frac{1}{8}(2)+\frac{1}{8}(2)+\frac{1}{8}(2)+\frac{1}{8}(3) \\
& =\frac{1}{8}(0)+\frac{3}{8}(1)+\frac{3}{8}(2)+\frac{1}{8}(3) \\
& =P\left(X_{0}\right)(0)+P\left(X_{1}\right)(1)+P\left(X_{2}\right)(2)+P\left(X_{3}\right)(3) \\
& =\frac{0+3+6+3}{8}=\frac{12}{8}=\frac{3}{2} .
\end{aligned}
$$

Expected values

Definition (Expected value)

The expected value of a random variable $X: \Omega \rightarrow \mathbb{R}$ with probability distribution $P: \Omega \rightarrow \mathbb{R}$ is given by:

$$
E(X)=\sum_{\omega \in \Omega} P(\omega) X(\omega)
$$

Definition

The event corresponding to value $x \in \mathbb{R}$, denoted X_{x}, is defined as:

$$
X_{x}=X^{-1}[x]=\{\omega \in \Omega \mid X(\omega)=x\}
$$

More generally, for $A \subseteq \mathbb{R}$:

$$
X_{A}=X^{-1}[A]=\{\omega \in \Omega \mid X(\omega) \in A\}
$$

Expected values

Corollary

If $\operatorname{ran} X=\left\{x_{1}, \ldots, x_{n}\right\}$, and $X_{x_{i}}=X^{-1}\left[x_{i}\right]=\left\{\omega \in \Omega \mid X(\omega)=x_{i}\right\}$, then events $X_{x_{1}}, \ldots, X_{x_{n}}$ partition Ω. It follows that:

$$
E(X)=\sum_{i=1}^{n} P\left(X_{x_{i}}\right) x_{i}
$$

Often X is referred to as a random variable, and $X_{x_{i}}$ is written $X=x_{i}$; i.e., $P\left(X=x_{i}\right)$.

Exercise

For the three-coins example, let X map outcomes to the number of heads. What is X_{2} ? $X_{\{2,3\}}$?

Expected values

For a random variable (real-valued function from Ω to \mathbb{R}) X :

- $E(X)$ is also called the limiting (or long run) average of X
- $E(X)$ may not be any actual value in $\operatorname{ran} X$
- $E(X)$ is a measure of the 'centre', or centroid, of the values of the outcomes
- Natural correspondence with the 'centre of gravity/mass' of a distribution of point masses on a line, where $P\left(X=x_{i}\right)$ corresponds to the proportion of the total mass positioned at x_{i}

