Probability

1. Measuring uncertainty
 - Probability
The ontology of uncertainty

Example (Tossing a coin)

After a coin is tossed, the top-most face may be ‘heads’ or ‘tails’.

- Tossing a coin is a random process or chance experiment
- Each toss of the coin corresponds to a trial of the experiment
- ‘Heads’ is one among the experiment’s possible individual outcomes
- ‘Tossing heads’ is an observable event
The ontology of uncertainty

Example (Rolling a die)
After a die is rolled, the top-most face may be any of a one, two, . . . , six.

- Observable events include rolling a six; a three; an even number; a number greater than two
- It's not always the case that individual outcomes can be observed; e.g., experimental error

In a decision problem:
- Each state (of nature) and outcome/consequence in a decision problem corresponds to an event
- States and outcomes are assumed to be mutually exclusive
- Experimental data and observations can provide information about 'likelihoods' of certain events (states/outcomes)
- Likelihood estimates may be objective or subjective, and may change depending on the agent's epistemic state
Frequency interpretation of probability

Outcomes:

\[
t, h, h, t, t, h, t, h, \ldots
\]

\[n\]

Definition (Frequency interpretation of probability)

The probability of an event, \(E \), in an experiment of chance, is the limit of the average occurrences of \(E \) over any sequence of indefinitely many trials; i.e.,

\[P(E) = \lim_{n \to \infty} \frac{n_E}{n}\]

where \(n_E \) is the number of occurrences of event \(E \) in the first \(n \) trials.

- e.g., For event \(H \): \(\frac{0}{1}, \frac{1}{2}, \frac{2}{3}, \frac{2}{4}, \frac{3}{5}, \frac{3}{6}, \ldots, \frac{n_H}{n}, \ldots \)
- What is \(P(H) \) for this experiment?

Bayesian interpretation

- The frequency interpretation assumes repeatable experiments/processes
- It is objective: a fixed property of the underlying random process/system; the same for every agent irrespective of the particular sequence of trials or of the epistemic state of the agents
- Problem: What is the ‘probability’ that Germany will win the 2018 football world cup?

Definition (Bayesian probability)

Probability is an agent’s subjective degree of belief in the occurrence of an event.

- An agent’s subjective probability depends on the agent’s epistemic state (knowledge and beliefs)
Set operations

Assume $A, B \subseteq \Omega$.

- The **intersection** of sets A and B, written $A \cap B$ (or just AB), is the set of all elements common to both A and B; i.e.,

 $$A \cap B = \{ x \in \Omega \mid x \in A \ \&\ x \in B \}$$

- The **union** of sets A and B, written $A \cup B$, is the set of all elements in either A or B or both; i.e.,

 $$A \cup B = \{ x \in \Omega \mid x \in A \ \text{or} \ x \in B \}$$

- The **complement** of a set A, written \overline{A}, is the set of all elements in Ω that are not in A; i.e.,

 $$\overline{A} = \{ x \in \Omega \mid x \notin A \}$$

Definition

The *set difference* of A and B, written $A \setminus B$, is the set of all elements in A but not in B; i.e.,

$$A \setminus B = \{ x \in \Omega \mid x \in A \ \&\ x \notin B \}.$$

Note that $\overline{A} = \Omega \setminus A$.

Exercise

Show that:

- $A \setminus B = A \cap \overline{B}$
- $A \cap \Omega = A$
- $A \cap \emptyset = \emptyset$
- $A(B \cup C) = (AB) \cup (AC)$
- $\overline{A \cup B} = \overline{A} \cap \overline{B}$
- $A \cup \Omega = \Omega$
- $A \cup \emptyset = \emptyset$
Set definitions

Definition
Sets A and B are **disjoint** iff $A \cap B = \emptyset$.

Exercise
Show that for sets A and B:
- they are disjoint (i.e., $A \cap B = \emptyset$) iff $A \subseteq B$
- $A \subseteq B$ iff A and \overline{B} are disjoint
- Show that A and \overline{A} are disjoint
- $A \setminus B$, AB, and $B \setminus A$ are all (pair-wise) disjoint

Cardinality and counting

Definition (Cardinality)
The **cardinality** of a set A, written $|A|$, is the **magnitude** of A; for finite A this is the number of elements of A.

Examples: if $A = \{2, 4, 7\}$, then $|A| = 3$. The set of positive square numbers less than 20 has cardinality 4.

Definition
Sets A and B are said the be **equinumerous**, written $A \cong B$, iff there is a one-to-one correspondence from A to B. By definition $|A| = |B|$ iff $A \cong B$.

Exercise
What is $|\emptyset|$? $\{|n \in \mathbb{N} | 0 < n^2 < 2013 \& n \text{ is even}\}$? Show that $\mathbb{N} \cong \{1, 4, 9, 16, \ldots \}$.
Counting

Cardinal properties
- If \(A \) and \(B \) are disjoint, then \(|A \cup B| = |A| + |B| \) (Sum rule)
- \(|A \times B| = |A| \times |B| \) (Product rule)

Exercise
Show that:
- the set of binary sequences of length \(n \), \(\{0, 1\}^n \cong \mathbb{P}\{1, \ldots, n\} \)
- in general, for any \(A \) and \(B \), \(|A \cup B| = |A| + |B| - |A \cap B| \)

Properties

Exercises
Show that:
- If \(B \subseteq A \), then \(|A \setminus B| = |A| - |B| \) and \(|B| \leq |A| \)
- Verify that for any set \(A \), \(|A| \geq 0 \)
- \(A \cup B = (A \setminus B) \cup (A \cap B) \cup (B \setminus A) = A\overline{B} \cup AB \cup \overline{AB} \)
- What region in the diagram represents \(\overline{A} \cap \overline{B} \)?
- \(A \setminus B \) and \(A \cap B \) are disjoint
Counting example

Example (Seats)

Seats in a small auditorium are labelled by a row letter $L = \{A, B, C, D, E\}$, and a seat number $N = \{1, \ldots, 10\}$.

Exercise

How many seats are there in total?

$$\Omega \sim L \times N$$

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td></td>
</tr>
</tbody>
</table>

$$|\Omega| = |L \times N| = |L| \times |N| = 5 \times 10 = 50.$$
Probability language

Definition (Mutually exclusive events)

The events corresponding to $A, B \subseteq \Omega$ are *mutually exclusive*, or *incompatible*, if A and B are disjoint.

Example: rolling a three and rolling an even number; $T = \{s_3\}$ and $E = \{s_2, s_4, s_6\}$.

Definition (Impossible and certain events)

An event is *impossible* if it corresponds to \emptyset. An event corresponding to Ω is *certain*.

Corollary

Two events A and B are incompatible iff their conjunction is impossible.

Finite probability

Definition (Laplace)

For an experiment whose outcome space Ω consists of *finitely many equally likely outcomes*, the probability of event $E \subseteq \Omega$ is the ratio of the event’s outcomes to the total possible outcomes; *i.e.*:

$$P(E) = \frac{|E|}{|\Omega|}.$$

Exercise

What is the probability of ‘rolling a six’? Of rolling an even number? A multiple of three? A number greater than two? An even number greater than two? An even number or a number greater than two?
Finite probability properties

Exercises

Show that for Laplace’s definition of probability:
- \(P(\Omega) = 1 \)
- \(P(A) \geq 0 \), for any event \(A \subseteq \Omega \)
- if \(A \) and \(B \) are mutually exclusive events then \(P(A \cup B) = P(A) + P(B) \)
- \(P(A^C) = 1 - P(A) \)
- if \(A \) and \(B \) are not mutually exclusive then \(P(A \cup B) = P(A) + P(B) - P(AB) \)

If \(\Omega \) is not finite, or the possible outcomes are not equally likely, then the probability assignment \(P(E) = \frac{|E|}{|\Omega|} \) is no longer meaningful.

Probability properties

Exercise

Verify that for any probability function \(f \):
- \(f(\emptyset) = 0 \)
- \(f(A^C) = 1 - f(A) \)
- \(f(A \cup B) = f(A) + f(B) - f(AB) \)

Exercise

Verify that for any probability function \(f \), if \(A \subseteq B \), then \(f(A) \leq f(B) \).
Conditional probability

Example (Dice)

For a fair die, consider the events:

- $E = \{s_2, s_4, s_6\}$ — an even number
- $F = \{s_4, s_5, s_6\}$ — a number greater than three

- $P(E) = \frac{|E|}{|\Omega|} = \frac{3}{6} = \frac{1}{2}$
- If we learn that a number greater than three was rolled then our new outcome space is $\Omega' = F = \{s_4, s_5, s_6\}$. Moreover, $E' = \{s_4, s_6\}$. So $P_F(E') = \frac{|E'|}{|\Omega'|} = \frac{|\{s_4, s_6\}|}{|\{s_4, s_5, s_6\}|} = \frac{2}{3}$.
- But $E' = E \cap F = EF$ and $\Omega' = \Omega \cap F = F$. Hence $P_F(E') = \frac{P(EF)}{P(F)}$.
- Note here that $P_F(E') > P(E)$

Definition

The conditional probability of event A conditional on B (where $P(B) \neq 0$), written $P(A|B)$, is defined by:

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

In the diagram above, $P(A|B)$ represents the ratio of (the area of) the region AB (the dark region) to that of the whole of B.
Conditional probability

Exercise

For the dice example earlier:
- What is $P(E|F)$?
- $P(F|E)$?
- Let G be the event: ‘The number three is rolled’. Describe the event \overline{G} in words
- What are $P(E|G)$ and $P(G|E)$?

Exercises

In general, for any events A, B:
- Is $P(A|B) = P(B|A)$ necessarily true?
- Is $P(A|B) + P(\overline{A}|B) = 1$?
- Is $P(A|B) + P(A|\overline{B}) = 1$?

Conditional independence

![Diagram showing events A, B, and A intersect B]

Definition

Event A is (conditionally) independent of event B if:

$$P(A|B) = P(A).$$

Event A is (conditionally) dependent on B if A is not (conditionally) independent of B.

For example, if B is a random sample of a population.
Conditional independence

Exercises

- If A is conditionally independent of B is B necessarily conditionally independent of A?
- Is rolling an even number independent of rolling a number greater than three?
- Prove that if A is conditionally independent of B then $P(AB) = P(A)P(B)$.

Bayes’s rule

- Rearranging the definition of conditional probability:
 \[P(A \cap B) = P(A|B)P(B) \]
- By symmetry $P(A \cap B) = P(B \cap A)$; therefore: $P(A|B)P(B) = P(B|A)P(A)$.
 Rearranging this equation gives:

Theorem (Bayes’s Theorem I)

If A and B are any two events ($P(A) \neq 0$), then:

\[P(B|A) = \frac{P(A|B)P(B)}{P(A)} \]
Measuring uncertainty Probability

Bayes’s Venn diagram

But $A = AB \cup A\bar{B}$. So we get the following:

Theorem (Bayes’s Theorem I’)

If A and B are any two events ($P(A) \neq 0$), then:

$$P(B|A) = \frac{P(AB)}{P(AB) + P(A\bar{B})}$$

Extending Bayes’s rule

$$P(B_1|A) = \frac{P(AB_1)}{P(AB_1) + P(AB_2) + P(AB_3)}$$
$$P(B_2|A) = \frac{P(AB_2)}{P(AB_1) + P(AB_2) + P(AB_3)}$$
$$P(B_3|A) = \frac{P(AB_3)}{P(AB_1) + P(AB_2) + P(AB_3)}$$
Bayes’s rule generalised

Events B_1, \ldots, B_n are said to be universally exhaustive (of Ω) if $\bigcup_{i=1}^{n} B_i = \Omega$.

Theorem (Bayes’s Theorem II)

If $B_1, \ldots, B_k, \ldots, B_n$ are mutually exclusive and universally exhaustive events and A is a possible event ($P(A) \neq 0$) then:

$$P(B_k|A) = \frac{P(AB_k)}{\sum_{i=1}^{n} P(AB_i)}$$

Theorem (Bayes’s Theorem II’)

If $B_1, \ldots, B_k, \ldots, B_n$ are mutually exclusive and universally exhaustive events and A is a possible event ($P(A) \neq 0$) then:

$$P(B_k|A) = \frac{P(A|B_k)P(B_k)}{\sum_{i=1}^{n} P(A|B_i)P(B_i)}$$

Bayes’s rule example

Example (Medical diagnostics)

In a given population of people, one in every thousand have cancer. A certain pathology test is used to detect the disease. The test is ‘good’ but not perfect; it returns a positive result for someone with the disease about 98% of the time, and registers a false positive (i.e., gives a positive result for a person free of the disease) 5% of the time.

Exercise

A random person comes in to get tested and the test returns a positive result. What is the probability that the person has cancer?
Example: solution

Given information:

\[
P(C) = \frac{1}{1000} \quad P(\overline{C}) = \frac{999}{1000}
\]
\[
P(T^+ | C) = \frac{98}{100} \quad P(T^+ | \overline{C}) = \frac{2}{100}
\]
\[
P(T^+ | C) = \frac{5}{100} \quad P(T^+ | \overline{C}) = \frac{95}{100}
\]

Calculate \(P(C | T^+) \).

\[
P(C | T^+) = \frac{P(C T^+)}{P(T^+)} = \frac{P(CT^+)}{P(CT^+ \cup \overline{CT}^+)} = \frac{P(CT^+)}{P(T^+ | C)P(C) + P(T^+ | \overline{C})P(\overline{C})}
\]

\[
= \frac{\frac{98}{100} \times \frac{1}{1000}}{\frac{98}{100} \times \frac{1}{1000} + \frac{5}{100} \times \frac{999}{1000}} = \frac{98}{98 + 5 \times 999} \approx \frac{100}{5000} = 0.02
\]

Patient only has 2% chance of having cancer despite testing positive?!

Expected value

Example (Three coins)

Consider the experiment of tossing three coins simultaneously; i.e., \(\Omega = \{h, t\} \times \{h, t\} \times \{h, t\} = \{h, t\}^3 = \{hhh, hht, hth, htt, thh, tht, tth, ttt\} \). Let \(N_H(\omega) \) be the number of heads in outcome \(\omega \); e.g.,

\[
N_H(hth) = N_H(hht) = N_H(thh) = 2;
\]
\[
N_H(ttt) = 0 \quad N_H(hhh) = 3.
\]

In general \(N_H(\omega) \in \{0, \ldots , 3\} \). Let \(X_k \) be the event of tossing \(k \) heads.

\[
X_0 = \{ttt\}, \quad X_1 = \{htt, tht, tth\},
\]
\[
X_2 = \{hht, hth, thh\}, \quad X_3 = \{hhh\}.
\]

Hence:

\[
E(h) = \frac{1}{8}(0) + \frac{3}{8}(1) + \frac{3}{8}(2) + \frac{1}{8}(3)
\]
\[
= \frac{1}{8}(0) + \frac{3}{8}(1) + \frac{3}{8}(2) + \frac{1}{8}(3)
\]
\[
= P(X_0)(0) + P(X_1)(1) + P(X_2)(2) + P(X_3)(3)
\]
\[
= 0 + 3 + 6 + 3 = \frac{12}{8} = \frac{3}{2}.
\]
Expected values

Definition (Expected value)
The expected value of a random variable $X : \Omega \rightarrow \mathbb{R}$ with probability distribution $P : \Omega \rightarrow \mathbb{R}$ is given by:

$$E(X) = \sum_{\omega \in \Omega} P(\omega)X(\omega)$$

Definition
The event corresponding to value $x \in \mathbb{R}$, denoted X_x, is defined as:

$$X_x = X^{-1}[x] = \{\omega \in \Omega \mid X(\omega) = x\}$$

More generally, for $A \subseteq \mathbb{R}$:

$$X_A = X^{-1}[A] = \{\omega \in \Omega \mid X(\omega) \in A\}$$

Corollary
If $\text{ran } X = \{x_1, \ldots, x_n\}$, and $X_{x_i} = X^{-1}[x_i] = \{\omega \in \Omega \mid X(\omega) = x_i\}$, then events X_{x_1}, \ldots, X_{x_n} partition Ω. It follows that:

$$E(X) = \sum_{i=1}^{n} P(X_{x_i})x_i$$

Often X is referred to as a random variable, and X_{x_i} is written $X = x_i$; i.e., $P(X = x_i)$.

Exercise
For the three-coins example, let X map outcomes to the number of heads. What is X_2? $X_{\{2,3\}}$?
Expected values

For a random variable (real-valued function from Ω to \mathbb{R}) X:

- $E(X)$ is also called the limiting (or long run) average of X
- $E(X)$ may not be any actual value in $\text{ran } X$
- $E(X)$ is a measure of the ‘centre’, or centroid, of the values of the outcomes
- Natural correspondence with the ‘centre of gravity/mass’ of a distribution of point masses on a line, where $P(X = x_i)$ corresponds to the proportion of the total mass positioned at x_i