
COMP1511 - Programming
Fundamentals

Week 8 - Lecture 13

What did we learn last week?
Memory

● Allocating memory for use beyond the scope of functions

Multiple File Projects

Command Line Arguments

Linked Lists

● structs, pointers and malloc all together!

What are we learning today?
Linked Lists

● Continuing our work from last week
● Continuing our example of a Linked List project
● Adding and Removing from Linked Lists

Recap - Linked Lists
A chain of identical structs to hold
information

● Pointers to the same type of struct so
they can be chained together

● Some kind of information stored in
the struct

struct node {
 struct node *next;
 int data;
};

A Linked List

A program's memory (not to scale)

Node

Next

Data

Node

Next

Data

Node

Next

Data

Node

Next

Data
A
pointer
to the
first
node

NULL

Looping through a Linked List
Loop by using the next pointer

● We can jump to the next node by following the current node's next
pointer

● We know we're at the end if the next pointer is NULL

// Loop through a list of nodes, printing out their data
void printData(struct node *n) {
 while (n != NULL) {
 printf("%d\n", n->data);
 n = n->next;
 }
}

Battle Royale
Let's use a Linked List to track the players in a game

● We're going to start by adding players to the game
● We want to be able to print all the players that are currently in the game

(the list of players can change as the game goes on)
● We might want to control the order of the list, so we need to be able to

insert at a particular position
● We also want to be able to find and remove players from the list if they're

knocked out of the round

What will our player nodes look like?
We're definitely going to want a basic node struct

● Let's start with a name
● And a pointer to the next node

struct player {
 char name[MAX_NAME_LENGTH];
 struct player *next;
};

Creating players
We'll want a function that creates a node

// Create a player node using the name and next pointer provided
// Return a pointer to this node
struct player *createPlayer(char newName[], struct player *newNext) {
 struct player *p;
 p = malloc(sizeof (struct player));
 strcpy(p->name, newName);
 p->next = newNext;
 return p;
}

Creating the list itself
Note that we don't need to specify the length of the list!

This is one basic way of connecting player nodes together to make a list

int main(void) {
 // create the list of players
 struct node *head = createPlayer("Marc", NULL);
 head = createPlayer("Tom", head);
 head = createPlayer("Goku", head);
 head = createPlayer("Bulma", head);
 head = createPlayer("Master Roshi", head);

 return 0;
}

Using createPlayer

A program's memory (not to scale)

First Player

Next

Marc
head NULL

Head points at the First Player, its next is NULL

Adding another Player

A program's memory (not to scale)

New Player

Next

Tom head

First Player

Next

Marc
NULL

The New Player is created and copies the head pointer for its next

Next
copies
head

Making sure the list is still valid

A program's memory (not to scale)

New Player

Next

Tom
head moves
to aim at
New Player

First Player

Next

Marc
NULL

createPlayer returns a pointer to New Player, which is assigned to head

Next
copied the
old head

Printing out the list of players
How do we traverse a list to see all the elements in it?

● Loop through, starting with the pointer to the head of the list
● Use whatever data is inside the player node
● Then move onto the next pointer from that player node
● If the pointer is NULL, then we've reached the end of the list

// Loop through the list and print out the player names
void printPlayers(struct player* listPlayer) {
 while (listPlayer != NULL) {
 printf("%s\n", listPlayer->name);
 listPlayer = listPlayer->next;
 }
}

Break Time
Homework - it's not real homework, just things that can inspire you

● AlphaGo Documentary (on Netflix)
● I, Robot Short Stories (Isaac Asimov)
● Snow Crash and The Cryptonomicon Novels (Neal Stephenson)
● Human Resource Machine Game (on Steam, iOS and Android)
● Space Alert Board Game (Vlaada Chvatil)

Inserting Nodes into a Linked List
Linked Lists allow you to insert nodes in between other nodes

● We can do this by simply aiming next pointers to the right places
● We find two linked nodes that we want to put a node between
● We take the next of the first node and point it at our new node
● We take the next of the new node and point it at the second node

This is much less complicated with diagrams . . .

Our Linked List
Before we've tried to insert anything

A program's memory (not to scale)

First Node

Next

2

Second
Node

Next

1
NULLhead

Create a node
A new node is made, it's not connected to anything yet

A program's memory (not to scale)

First Node

Next

2

Second
Node

Next

1
NULLhead

New Node

Next

2

Connect the new node to the second node
Alter the next pointer on the New Node

A program's memory (not to scale)

First Node

Next

2

Second
Node

Next

1
NULLhead

New Node

Next

2

Copy First Node's Next

Connect the first node to the new node
Alter the next pointer on the First Node

A program's memory (not to scale)

First Node

Next

2

Second
Node

Next

1
NULLhead

New Node

Next

2

Set First Node's Next to
New Node's address

Code for insertion of players
// Create and insert a new node into a list after a given insert position
struct player *insert(struct player* insertPos, char newName[]) {
 struct player *p = createPlayer(newName, NULL);
 if (insertPos == NULL) {
 // List is empty, p becomes the only element in the list
 insertPos = p;
 p->next = NULL;
 } else {
 // Set the new player (p)'s next to after the insertion position
 p->next = insertPos->next;
 // Set the insert position node's next to now aim at p
 insertPos->next = p;
 }
 return insertPos;
}

Inserting Players to create a list
We can use insertion to have greater control of where players end up in
a list

int main(void) {
 // create the list of players
 struct node *head = createPlayer("Marc", NULL);
 insert("Tom", head);
 insert("Goku", head);
 insert("Bulma", head);
 insert("Master Roshi", head);

 printPlayers(head);

 return 0;
}

Insertion with some conditions
We can now insert into any position in a Linked List

● We can read the data in a node and decide whether we want to insert
before or after it

● Let's insert our elements into our list based on alphabetical order
● We're going to use a string.h function, strcmp() for this
● strcmp() compares two strings, and returns

○ 0 if they're equal
○ negative if the first has a lower ascii value than the second
○ positive if the first has a higher ascii value than the second

Finding where to insert
We're going to loop through the list

● This loop assumes the list is already in alphabetical order
● Each time we loop, we're going to keep track of the previous player
● We'll test the name of each player using strcmp()
● We stop looping once we find the first name that's "higher" than ours
● Then we insert before that player

Finding the insertion point

Player

Next

A

Player

Next

C

Player

Next

E

Player

Next

S
head
points
at the
first
player

NULL

D

Attempting to insert a player with name: "D" into a sorted
list while maintaining the alphabetical order

loop stops here

Insert between these two players

loop starts here

Inserting into a list Alphabetically
struct player *insertAlphabetical(char newName[], struct player* head) {
 struct player *previous = NULL;
 struct player *p = head;
 // Loop through the list and find the right place for the new name
 while (p != NULL && strcmp(newName, p->name) > 0) {
 previous = p;
 p = p->next;
 }
 struct player *insertionPoint = insert(newName, previous);
 // Return the head of the list (even if it has changed)
 if (previous == NULL) { // we inserted at the start of the list
 insertionPoint->next = p;
 return insertionPoint;
 } else {
 return head;
 }
}

What did we learn today?
Linked Lists

● Recap of Linked Lists
● Building the list
● Looping through the list
● Inserting nodes at a specific location
● Inserting nodes into an ordered list

