
Simple Structures in 
Semantic Modelling



Purpose of Semantic Data Model

2

• Semantic data model, other than providing a logical 
structure for data, provide more meaning of the data. It 
helps to provide a high level understanding of data by 
abstracting it further away from physical aspect of data 
storage.

• Data is modelled in more human readable manner

• Real world concepts are captured through a knowledge 
graph



Semantic Web and 
RDF



Semantic Web

• Web characteristics
• Huge amounts of data
• No central data model
• Hard to interpret/combine data

• Role of semantic modelling
• RDF helps manage distributed data
• Other semantic web standards build on this foundation
• Each source of data = set of triples
• Collection of RDF triples from different sources constitute a 

knowledge graph
• Information from different sources can be easily merged



Semantic web standards

• Semantic models can in the form of several layers of 
expressivity

• RDF → RDFS → OWL (increasing levels of semantic 
expressivity)

• Relationships → Classes (hierarchy) → Reasoning (new 
knowledge)



RDF

• Resource:
• A resource can be anything

• Should be uniquely identifiable and referenced by a URI

• Description:
• Describes the resources

• By properties and relationships that link resources 

• Framework: 
• A formal (machine readable) semantic model

• Uses a combination of web based protocols

• Is domain neutral



Basic RDF triple

Example statement: Doctors treat patients

Can be represented by several triples:

• Triple: <Doctor> <treats> <Patient> .

• Triple: <Patient> <hasName> “Jim” .

• Triple: <Appointment> <hasStartTime> <xsd:time> .



• Statement: Joe is Ziva’s professor.

• Can be modelled in RDF as a triple: <Joe> 
<isProfessorOf> <Ziva>



• Based on the context, there are other ways of modelling 
the same statement such as: 

<Joe> <hasStudent> <Ziva> 

OR 

<Ziva> <isStudentOf> <Joe> 

OR 

<Ziva> <hasProfessor> <Joe>



Simple RDF Structures



Example of a knowledge graph



Merging graphs



Adding more expressivity 
(RDFS)



• Example

Triples can be more specialised

14

Rose RedhasColour

Subject Predicate Object

Can be class, instance or datatype



• Previous example links 2 instances (Rose and Red)

• The subject and object can be of three categories:
• Class
• Datatype (i.e.: string, Integer, Boolean)
• Instance (of class)

• The predicate can be
• Datatype property (linking 2 instances)
• Object property (linking an instance and a datatype)

• Predicates can be user defined (e.g. “hasColour”) or 
predefined (e.g. RDF and RDFS predicates)

Subject–Predicate–Object expressions

15

Class

Instance

Datatype



• “A collection of individuals or sets of individuals that can 
be defined by their common properties”
• Open World Assumption

• A Class “Y” is the set of things that:
• Have some common property(ies) - Intentional

• Are designated to be a member of the Class – Extensional

• Classes can be arranged into hierarchies

• An instance of a class or subclass is a member or individual

• Relationships between classes and instances are 

defined with RDF predicate “type” 

Class Definition

16

Female

Madhushi

rdf:type



Properties

17

Rose 0.35weights

Object property

Rose RedhasColour

Datatype property

instance datatype

instance instance



061293851000

unsw.edu.au

1949

foundedIn

phoneNumber

birthDay

website

Example Graph

UNSW Ian Jacobs

Sydney

locatedAt

president

subject

predicate

object

18

Class

Instance

Datatype



Subclasses

• Definition: A classification schema for a categorisation of 
the concepts in a domain in a hierarchical structure

• Uses the subClass relationship, (parent-child), defined in RDFS

19

Class

subclassOf

type

Person

Female Male

Madhushi

Class

Instance

Datatype



Example



Inheritance

• From the graph, we can see by inheritance that Madhushi 
speaks a Language

21

UNSW
studiesIn

Sydney

Rajitha

Person

Female Male

Madhushi

speaksLanguage



Predefined predicates

• RDF defines:
• rdf:type

• RDFS defines:
• rdfs:class

• rdfs:subClassOf

• rdfs:domain

• rdfs:range

• rdfs:label

• rdfs:comment

• rdfs:subpropertyOf



Individual

Class

Subclass Subclass

Class

SubclassSubclass

IndividualProperty

Property

subPropertyOf

subClassOf subClassOf subClassOfsubClassOf

domain range

RDF

RDFS
type type



xsd:date

dateOfBirth

Person

Example of using predefined predicates

24

rdfs:domain rdfs:range

rdfs:label

“DOB”
“The date that the 
person was born”

rdfs:comment

personProperties

rdfs:subPropertyOf

Subject Predicate Object

dateOfBirth rdfs:domain Person

dateOfBirth rdfs:range xsd:date

dateOfBirth rdfs:label “DOB”

dateOfBirth rdfs:comment “The date…”

dateOfBirth rdfs:subPropertyOf personProperties



Comparing RDF and RDFS

• Example:
• RDF: 

• Jim has common cold

• RDF(S): 
• Patient is a subclass of Person

• The domain for the property hasCondition is the class Patient
and range is the class ClinicalCondition





“Sandra 
Ferreira

”

“Steve 
Barrett”

“Mia 
Shaw”

Greec
e

Austra
lia

Franc
e

Athen
s

Canbe
rra

Paris

Perso
n

Count
ry

Capital
City

Class Instance isA (type) bornInhasCapital

RDF to RDFS



More expressivity using OWL



OWL

• Web Ontology Language (OWL)

• Designed for expressivity about
• Things

• Groups of things

• Relations between things

• Designed to facilitate making inferences





Inference example

• From the graph, we can see by inference that Madhushi 
studies at Sydney

31

UNSW
studiesIn

Sydney

Rajitha

Person

Female Male

Madhushi

speaksLanguage



OWL basics (1)

• Class:
• owl:Class*

• owl:Thing

• owl:Nothing

• owl:Restriction

• owl:onProperty

• Property:
• owl:ObjectProperty

• owl:DatatypeProperty

• Equivalence:
• owl:sameAs

• owl:equivalentClass

• owl:equivalentProperty

• Non-equivalence:
• owl:differentFrom

• owl:disjointWith

• owl:AllDifferent

• owl:distinctMembers



OWL basics (2)

• Qualification:
• owl:hasValue
• owl:someValuesFrom
• owl:allValuesFrom

• Cardinality:
• owl:minCardinality
• owl:maxCardinality
• owl:cardinality

• Enumeration
• owl:oneOf

• Boolean:
• owl:complementOf
• owl:unionOf
• owl:intersectionOf



OWL properties

• OWL properties* and corresponding modelling rules:
• owl:inverseOf

• If (p1, owl:inverseOf, p2) and (x, p1, y) Then (y, p2, x)

• Example: If (hasPatient, owl:inverseOf, isPatientOf) and (Kate, hasPatient, Jim) Then 
(Jim, isPatientOf, Kate)

• owl:TransitiveProperty
• If (p, rdf:type, owl:TransitiveProperty) and (x, p, y) and (y, p, z) Then (x, p, z)

• Example: If (isTallerThan, rdf:type, owl:TranisitveProperty) and (Scott, isTallerThan, 
Sasha) and (Sasha, isTallerThan, Meg) Then (Scott, isTallerThan, Meg)

• owl:SymmetricProperty
• If (p, rdf:type, owl:SymmetricProperty) and (x, p, y) Then (y, p, x)
• Example: If (hasFriend, rdf:type, owl:SymmetricProperty) and (Dan, hasFriend, Ian) 

Then (Ian, hasFriend, Dan)



OWL properties

• Continued..
• owl:FunctionalProperty

• If (p, rdf:type, owl:FunctionalProperty) and (x, p, y) and (x, p, z) Then 
(y, owl:sameAs, z)

• Example: If (hasSpouse, rdf:type, owl:FunctionalProperty) and (Kim, 
hasSpouse, Sam) and (Kim, hasSpouse, Dan) Then (Sam, owl:sameAs, 
Dan)

• owl:InverseFunctionalProperty
• If (p, rdf:type, owl:InverseFunctionalProperty) and (x, p, y) and (z, p, y) 

Then (x, owl:sameAs z)

• Example: If (hasPassportNumber, owl:InverseFunctionalProperty) and 
(Toni, hasPassportNumber, "A5110817") and (Sophie, 
hasPassportNumber, "A5110817") Then (Toni, owl:sameAs, Sophie)







Summary



Ontologies

• Definition: “A formal, explicit specification of a 
shared conceptualisation” 

• An Ontology ascribes additional meaning
(semantics) to a graph by way of concept 
relationships and concept descriptions 
(attributes and relations).

1 Gruber, 199539

UNSW
studiesIn

Sydney

Rajitha

Person

Female Male

Madhushi



Semantic modelling standards

• RDFS and OWL define special types of relationships on 
top of RDF

• RDFS: Define class hierarchies 

• OWL: Defines different types of properties

• All knowledge can be uniquely encoded in an ontology

• Querying and reasoning becomes possible



Inheritance and Inference

• Ontologies contain embedded knowledge about an 
entity through Inheritance and Inference

• Inheritance
• In the structure of parent-child relationships, a subtype 

inherits the properties and relations of a supertype and 
increments one or more additional properties
• If B is a subClassOf C and x is a member of B

• By inference, we can derive that x is also a member of C

• Inference
• Extends the concept of inheritance to all relationships of an 

entity (not just super/subtypes)

41



Conclusion

• The basic element in a semantic model is a triple which 
denotes the relationship between a subject, a predicate and 
an object

• Simple structures can be defined on top of that
• Subjects and objects can be classes or instances
• Predicates connecting different instances can be properties
• Predicates connecting different classes can be of different types, 

most commonly in a class and subclass relationship
• Additional and more complex relationships can be defined

• These simple structures are used together to build ontologies 
which represent knowledge in a specific area

• One characteristic of semantic models is that new knowledge 
can inferred from the ontology


