® UNSW

Simple Structures in

Semantic Modelling

Sponsored by:

CAPSICUM

s Architects

Purpose of Semantic Data Model

* Semantic data model, other than providing a logical
structure for data, provide more meaning of the data. It
helps to provide a high level understanding of data by
abstracting it further away from physical aspect of data
storage.

e Data is modelled in more human readable manner

* Real world concepts are captured through a knowledge
graph

Semantic Web and
RDF

Semantic Web

* Web characteristics
* Huge amounts of data
* No central data model
* Hard to interpret/combine data

* Role of semantic modelling
* RDF helps manage distributed data
e Other semantic web standards build on this foundation

* Each source of data = set of triples

e Collection of RDF triples from different sources constitute a
knowledge graph

* Information from different sources can be easily merged

Semantic web standards

* Semantic models can in the form of several layers of
expressivity

 RDF = RDFS > OWL (increasing levels of semantic
expressivity)

» Relationships = Classes (hierarchy) = Reasoning (new
knowledge)

RDF

* Resource:
* A resource can be anything
e Should be uniquely identifiable and referenced by a URI

* Description:
* Describes the resources
* By properties and relationships that link resources

* Framework:
* A formal (machine readable) semantic model
* Uses a combination of web based protocols
* |s domain neutral

Basic RDF triple

Example statement: Doctors treat patients

Can be represented by several triples:

* Trip
* Trip

* Trip

e: <Doctor> <treats> <Patient> .
e: <Patient> <hasName> “Jim” .
e: <Appointment> <hasStartTime> <xsd:time> .

e Statement: Joe is Ziva’s professor.

e Can be modelled in RDF as a triple: <Joe>
<isProfessorOf> <Ziva>

Joe isProfessorOf o Ziva
7 4)
|
| | :
[| |
| | |
Subject Predicate Object/

Statement

Business Architects

* Based on the context, there are other ways of modelling
the same statement such as:

<Joe> <hasStudent> <Ziva>
OR

<Ziva> <isStudentOf> <Joe>
OR

<Ziva> <hasProfessor> <Joe>

Simple RDF Structures

r— — "
| Joe —IiisProfessorOf—> Ziva
| |
| |
| isSpouseOf | knows
e S T N S 1
Sydney |e livesIn =| Leroy —||7isPatientOf4|—> Kiah —I—worksAt—> RPAH |
R T gy l e e e L | [S G =
=
e RDF tripl
L riples

[UNsw CAPSICUM

SYDNEY
Business Architects

Example of a knowledge graph

FIGURE 3.5
Graphic representation of triples describing (a) Shakespeare’s plays and (b) parts of the United Kingdom.

CAPSICUM

Business Architects

Merging graphs

[#Tne!

FIGURE 3.5
Combined graph of all triples about Shakespeare and the United Kingdom.

£ UNSw CAPSICUM

SYDNEY

Business Architects

Adding more expressivity
(RDFS)

Triples can be more specialised

* Example

Subject—Predicate—Object expressions

* Previous example links 2 instances (Rose and Red)

* The subject and object can be of three categories:
* Class
* Datatype (i.e.: string, Integer, Boolean)
* Instance (of class)

* The predicate can be
» Datatype property (linking 2 instances) ! Datatype]

* Object property (linking an instance and a datatype)

* Predicates can be user defined (e.g. “hasColour”) or
predefined (e.g. RDF and RDFS predicates)

Class Definition

e “A collection of individuals or sets of individuals that can
be defined by their common properties”

* Open World Assumption
* AClass “Y” is the set of things that:

* Have some common property(ies) - Intentional
* Are designated to be a member of the Class — Extensional

e Classes can be arranged into hierarchies

 An instance of a class or subclass is a member or individual

* Relationships between classes and instances are Female
defined with RDF predicate “type” 1 rdf:type
Madhushi

CAPSICUM

Business Architects

Properties

Datatype property

G == | -

instance datatype

Object property

S == QN

instance instance

Example Graph

onjec

predicate \ x
6129385100

subject 1949 ‘
phoneNumb |
locatedAt foundedin
| Ian Jacobs
pres:dent
) § wepsite
-)
unsw.edu.au
Datatype

L J

5 UNSW CAPSICUM

SYDNEY

Ry A Business Architects

Subclasses

* Definition: A classification schema for a categorisation of
the concepts in a domain in a hierarchical structure

» Uses the subClass relationship, (parent-child), defined in RDFS

Class { Person
p S ‘ A |
< g subclassOf [Female { Male
i
; \ type {Madhushi
Datatype

- apsicuM

Business Architects

AssistantProfessor

N P

Example

FullProfessor

AssociateProfessor

RDFS

— — — —domain— —

PostgraduateStudent UndergraduateStudent

RDF

Joe

isProfessorOf——— Ziva

—> type I:I Individual

——{> subclassOf

UNSW

SYDNEY

O Class

CAPSICUM

Business Architects

Inheritance

* From the graph, we can see by inheritance that Madhushi
speaks a Language

{ Language - Pes ‘[Person
S N
= | |
AN
O%%\ Female { Male
studiesin g
Madhushi
%
S /
6“@6 S/%*f/eo’
@)
¥ ° Rajitha

CAPSICUM

Business Architects

Predefined predicates

 RDF defines:
e rdf:type

* RDFS defines:
 rdfs:class
* rdfs:subClassOf
e rdfs:domain
* rdfs:range
* rdfs:label
e rdfs:comment
 rdfs:subpropertyOf

domain

range

subClassOf subClassOf

RDF /

subClassOf

N

Individual

Property

> Individual

A

subPropertyOf

Property

CAPSICUM

Business Architects

Example of using predefined predicates

“The date that the

) MDOB"
person was born rdfs:subPropertyOf

rdfs:comment rdfs:label

{ FEREN rdfs:domain rdfs:range ‘ xsd:date ‘
Subject | predicate
dateOfBirth rdfs:domain Person
dateOfBirth rdfs:range xsd:date
dateOfBirth rdfs:label “DOB”
dateOfBirth rdfs:comment “The date...”

:5: UNSW dateOfBirth rdfs:subPropertyOf personProperties CAPS|CUM
Ry A

SYDNEY

Business Architects

Comparing RDF and RDFS

* Example:
* RDF:

* Jim has common cold
o RDF(S):
e Patient is asubclass of Person

 The domain for the property hasCondition is the class Patient
and range istheclassClinicalCondition

CAPSICUM

Business Architects

Patient ClinicalC ond@

)

Domain Range

— Jim hasCondition » CommonCold

= e _> Inferred type Individual

4[> subclassOf
O Class

RDF to RDFS

Austra
lia

Ferreira

4

“Steve

Barrett” Capital

City

“Mia

O Class Instance ___. isA (type) —> hasCapital —> bornin

Y

Business f

More expressivity using OWL

OWL

* Web Ontology Language (OWL)

* Designed for expressivity about
* Things
* Groups of things
* Relations between things

* Designed to facilitate making inferences

> rdfs:Resource

rdf:Property > rdfs:Class
Relation between RDF,
RDFS, and OWL
owl:ObjectProperty owl:DatatypeProperty owl: Thmg ——>owl: Class
N\

User defined classes

Instances

— > e
——> subdlassOf

" NS CAPSICUM

SYDNEY

Business Architects

Inference example

* From the graph, we can see by inference that Madhushi
studies at Sydney

{ Language - e ‘[Person
UN
[|
[Female { Male
dies| .
studiesin { Madhushi
%

S 2

(:g'@b ’//,/ a/‘/-/'edr

o

Pl Rajitha
] smd\eSM :

CAPSICUM

Business Architects

OWL basics (1

* owl:Class*

* owl:Thing

* owl:Nothing

* owl:Restriction
* owl:onProperty

* Property:
* owl:ObjectProperty
* owl:DatatypeProperty

* Equivalence:
* owl:isameAs
* owl:equivalentClass
* owl:equivalentProperty

* Non-equivalence:
* owl:differentFrom
* owl:disjointWith
* owl:AllDifferent
* owl:distinctMembers

7 UNSW I
% CAPSICUM

SYDNEY

Business Architects

OWL basics (2)

Qualification:
* owl:hasValue
* owl:someValuesFrom
e owl:allvaluesFrom

Cardinality:
e owl:minCardinality
e owl:maxCardinality
* owl:cardinality

Enumeration
* owl:oneOf

Boolean:
e owl:complementOf
e owl:unionOf
* owl:intersectionOf

SYDNEY

£ UNSw CAPSICUM

Business Architects

OWL properties

 OWL properties* and corresponding modelling rules:

e owl:inverseOf
* If (p,, owl:inverseOf, p,) and (x, p;, y) Then (y, p,, X)

e Example: If (hasPatient, owl:inverseOf, isPatientOf) and (Kate, hasPatient, Jim) Then
(Jim, isPatientOf, Kate)

» owl:TransitiveProperty
* If (p, rdf:type, owl:TransitiveProperty) and (x, p, y) and (y, p, z) Then (x, p, z)

* Example: If (isTallerThan, rdf:type, owl:TranisitveProperty) and (Scott, isTallerThan,
Sasha) and (Sasha, isTallerThan, Meg) Then (Scott, isTallerThan, Meg)

e owl:SymmetricProperty
* If (p, rdf:type, owl:SymmetricProperty) and (x, p, y) Then (y, p, x)

* Example: If (hasFriend, rdf:type, owl:SymmetricProperty) and (Dan, hasFriend, lan)
Then (lan, hasFriend, Dan)

UNSW CAPSICUM

SYDNEY

Ry A Business Architects

OWL properties

e Continued..

e owl:FunctionalProperty

* If (p, rdf:type, owl:FunctionalProperty) and (x, p, y) and (x, p, z) Then
(y, owl:sameAs, z)

* Example: If (hasSpouse, rdf:type, owl:FunctionalProperty) and (Kim,
hasSpouse, Sam) and (Kim, hasSpouse, Dan) Then (Sam, owl:sameAs,
Dan)

e owl:InverseFunctionalProperty

* If (p, rdf:type, owl:InverseFunctionalProperty) and (x, p, y) and (z, p, y)
Then (x, owl:sameAs z)

* Example: If (hasPassportNumber, owl:InverseFunctionalProperty) and
(Toni, hasPassportNumber, "A5110817") and (Sophie,
hasPassportNumber, "A5110817") Then (Toni, owl:sameAs, Sophie)

CAPSICUM

Business Architects

Inferred properties ~ .

~
\ ~
\ e
\ A
\ hasFriend
\
\
\
\ .
Sam L _sameAs S Dan hasFriend—» Ian
hasSpouse hasSpouse £ — — — - Functional property
o Kim <

UNSW CAPSICUM

SYDNEY

Ry A Business Architects

Scott

Transitive property

!

isTallerThan—» Sasha

A
/

isTallerThan—»

isTallerThan

i

|
Inferred property

CAPSICUM

Business Architects

Summary

Ontologies

* Definition: “A formal, explicit specification of a
shared conceptualisation”

* An Ontology ascribes additional meaning

(semantics) to a graph by way of concept
relationships and concept descriptions Person
(attributes and relations). X
| |
{ Female [Male
studiesin { Madhushi
%
N\ sty
(’%‘Q/ aﬁy@O’TO

Rajitha

v
J

\ Lheny CAPSICUM

SYDNEY
Business Architects

Semantic modelling standards

* RDFS and OWL define special types of relationships on
top of RDF

* RDFS: Define class hierarchies
* OWL: Defines different types of properties
* All knowledge can be uniquely encoded in an ontology

* Querying and reasoning becomes possible

Inheritance and Inference

* Ontologies contain embedded knowledge about an
entity through Inheritance and Inference

* Inheritance

* In the structure of parent-child relationships, a subtype
inherits the properties and relations of a supertype and
increments one or more additional properties

* If Bis asubClassOf C and x is a member of B
* By inference, we can derive that x is also a member of C

* Inference

* Extends the concept of inheritance to all relationships of an
entity (not just super/subtypes)

CAPSICUM

Business Architects

Conclusion

* The basic element in a semantic model is a triple which
denotes the relationship between a subject, a predicate and
an object

e Simple structures can be defined on top of that
* Subjects and objects can be classes or instances
* Predicates connecting different instances can be properties

* Predicates connecting different classes can be of different types,
most commonly in a class and subclass relationship

* Additional and more complex relationships can be defined

* These simple structures are used together to build ontologies
which represent knowledge in a specific area

* One characteristic of semantic models is that new knowledge
can inferred from the ontology

