
Simple Structures in 
Semantic Modelling



Purpose of Semantic Data Model
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• Semantic data model, other than providing a logical 
structure for data, provide more meaning of the data. It 
helps to provide a high level understanding of data by 
abstracting it further away from physical aspect of data 
storage.

• Data is modelled in more human readable manner

• Real world concepts are captured through a knowledge 
graph



Semantic Web and 
RDF



Semantic Web

• Web characteristics
• Huge amounts of data
• No central data model
• Hard to interpret/combine data

• Role of semantic modelling
• RDF helps manage distributed data
• Other semantic web standards build on this foundation
• Each source of data = set of triples
• Collection of RDF triples from different sources constitute a 

knowledge graph
• Information from different sources can be easily merged



Semantic web standards

• Semantic models can in the form of several layers of 
expressivity

• RDF → RDFS → OWL (increasing levels of semantic 
expressivity)

• Relationships → Classes (hierarchy) → Reasoning (new 
knowledge)



RDF

• Resource:
• A resource can be anything

• Should be uniquely identifiable and referenced by a URI

• Description:
• Describes the resources

• By properties and relationships that link resources 

• Framework: 
• A formal (machine readable) semantic model

• Uses a combination of web based protocols

• Is domain neutral



Basic RDF triple

Example statement: Doctors treat patients

Can be represented by several triples:

• Triple: <Doctor> <treats> <Patient> .

• Triple: <Patient> <hasName> “Jim” .

• Triple: <Appointment> <hasStartTime> <xsd:time> .



• Statement: Joe is Ziva’s professor.

• Can be modelled in RDF as a triple: <Joe> 
<isProfessorOf> <Ziva>



• Based on the context, there are other ways of modelling 
the same statement such as: 

<Joe> <hasStudent> <Ziva> 

OR 

<Ziva> <isStudentOf> <Joe> 

OR 

<Ziva> <hasProfessor> <Joe>



Simple RDF Structures



Example of a knowledge graph



Merging graphs



Adding more expressivity 
(RDFS)



• Example

Triples can be more specialised
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Rose RedhasColour

Subject Predicate Object

Can be class, instance or datatype



• Previous example links 2 instances (Rose and Red)

• The subject and object can be of three categories:
• Class
• Datatype (i.e.: string, Integer, Boolean)
• Instance (of class)

• The predicate can be
• Datatype property (linking 2 instances)
• Object property (linking an instance and a datatype)

• Predicates can be user defined (e.g. “hasColour”) or 
predefined (e.g. RDF and RDFS predicates)

Subject–Predicate–Object expressions
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Class

Instance

Datatype



• “A collection of individuals or sets of individuals that can 
be defined by their common properties”
• Open World Assumption

• A Class “Y” is the set of things that:
• Have some common property(ies) - Intentional

• Are designated to be a member of the Class – Extensional

• Classes can be arranged into hierarchies

• An instance of a class or subclass is a member or individual

• Relationships between classes and instances are 

defined with RDF predicate “type” 

Class Definition
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Female

Madhushi

rdf:type



Properties
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Rose 0.35weights

Object property

Rose RedhasColour

Datatype property

instance datatype

instance instance



061293851000

unsw.edu.au

1949

foundedIn

phoneNumber

birthDay

website

Example Graph

UNSW Ian Jacobs

Sydney

locatedAt

president

subject

predicate

object
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Class

Instance

Datatype



Subclasses

• Definition: A classification schema for a categorisation of 
the concepts in a domain in a hierarchical structure

• Uses the subClass relationship, (parent-child), defined in RDFS
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Example



Inheritance

• From the graph, we can see by inheritance that Madhushi 
speaks a Language
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Predefined predicates

• RDF defines:
• rdf:type

• RDFS defines:
• rdfs:class

• rdfs:subClassOf

• rdfs:domain

• rdfs:range

• rdfs:label

• rdfs:comment

• rdfs:subpropertyOf



Individual

Class

Subclass Subclass

Class

SubclassSubclass

IndividualProperty

Property

subPropertyOf

subClassOf subClassOf subClassOfsubClassOf

domain range

RDF

RDFS
type type



xsd:date

dateOfBirth

Person

Example of using predefined predicates
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rdfs:domain rdfs:range

rdfs:label

“DOB”
“The date that the 
person was born”

rdfs:comment

personProperties

rdfs:subPropertyOf

Subject Predicate Object

dateOfBirth rdfs:domain Person

dateOfBirth rdfs:range xsd:date

dateOfBirth rdfs:label “DOB”

dateOfBirth rdfs:comment “The date…”

dateOfBirth rdfs:subPropertyOf personProperties



Comparing RDF and RDFS

• Example:
• RDF: 

• Jim has common cold

• RDF(S): 
• Patient is a subclass of Person

• The domain for the property hasCondition is the class Patient
and range is the class ClinicalCondition
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More expressivity using OWL



OWL

• Web Ontology Language (OWL)

• Designed for expressivity about
• Things

• Groups of things

• Relations between things

• Designed to facilitate making inferences





Inference example

• From the graph, we can see by inference that Madhushi 
studies at Sydney
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OWL basics (1)

• Class:
• owl:Class*

• owl:Thing

• owl:Nothing

• owl:Restriction

• owl:onProperty

• Property:
• owl:ObjectProperty

• owl:DatatypeProperty

• Equivalence:
• owl:sameAs

• owl:equivalentClass

• owl:equivalentProperty

• Non-equivalence:
• owl:differentFrom

• owl:disjointWith

• owl:AllDifferent

• owl:distinctMembers



OWL basics (2)

• Qualification:
• owl:hasValue
• owl:someValuesFrom
• owl:allValuesFrom

• Cardinality:
• owl:minCardinality
• owl:maxCardinality
• owl:cardinality

• Enumeration
• owl:oneOf

• Boolean:
• owl:complementOf
• owl:unionOf
• owl:intersectionOf



OWL properties

• OWL properties* and corresponding modelling rules:
• owl:inverseOf

• If (p1, owl:inverseOf, p2) and (x, p1, y) Then (y, p2, x)

• Example: If (hasPatient, owl:inverseOf, isPatientOf) and (Kate, hasPatient, Jim) Then 
(Jim, isPatientOf, Kate)

• owl:TransitiveProperty
• If (p, rdf:type, owl:TransitiveProperty) and (x, p, y) and (y, p, z) Then (x, p, z)

• Example: If (isTallerThan, rdf:type, owl:TranisitveProperty) and (Scott, isTallerThan, 
Sasha) and (Sasha, isTallerThan, Meg) Then (Scott, isTallerThan, Meg)

• owl:SymmetricProperty
• If (p, rdf:type, owl:SymmetricProperty) and (x, p, y) Then (y, p, x)
• Example: If (hasFriend, rdf:type, owl:SymmetricProperty) and (Dan, hasFriend, Ian) 

Then (Ian, hasFriend, Dan)



OWL properties

• Continued..
• owl:FunctionalProperty

• If (p, rdf:type, owl:FunctionalProperty) and (x, p, y) and (x, p, z) Then 
(y, owl:sameAs, z)

• Example: If (hasSpouse, rdf:type, owl:FunctionalProperty) and (Kim, 
hasSpouse, Sam) and (Kim, hasSpouse, Dan) Then (Sam, owl:sameAs, 
Dan)

• owl:InverseFunctionalProperty
• If (p, rdf:type, owl:InverseFunctionalProperty) and (x, p, y) and (z, p, y) 

Then (x, owl:sameAs z)

• Example: If (hasPassportNumber, owl:InverseFunctionalProperty) and 
(Toni, hasPassportNumber, "A5110817") and (Sophie, 
hasPassportNumber, "A5110817") Then (Toni, owl:sameAs, Sophie)







Summary



Ontologies

• Definition: “A formal, explicit specification of a 
shared conceptualisation” 

• An Ontology ascribes additional meaning
(semantics) to a graph by way of concept 
relationships and concept descriptions 
(attributes and relations).

1 Gruber, 199539
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Semantic modelling standards

• RDFS and OWL define special types of relationships on 
top of RDF

• RDFS: Define class hierarchies 

• OWL: Defines different types of properties

• All knowledge can be uniquely encoded in an ontology

• Querying and reasoning becomes possible



Inheritance and Inference

• Ontologies contain embedded knowledge about an 
entity through Inheritance and Inference

• Inheritance
• In the structure of parent-child relationships, a subtype 

inherits the properties and relations of a supertype and 
increments one or more additional properties
• If B is a subClassOf C and x is a member of B

• By inference, we can derive that x is also a member of C

• Inference
• Extends the concept of inheritance to all relationships of an 

entity (not just super/subtypes)
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Conclusion

• The basic element in a semantic model is a triple which 
denotes the relationship between a subject, a predicate and 
an object

• Simple structures can be defined on top of that
• Subjects and objects can be classes or instances
• Predicates connecting different instances can be properties
• Predicates connecting different classes can be of different types, 

most commonly in a class and subclass relationship
• Additional and more complex relationships can be defined

• These simple structures are used together to build ontologies 
which represent knowledge in a specific area

• One characteristic of semantic models is that new knowledge 
can inferred from the ontology


