DESN2000 (Computer Engineering) 2025 T2 Lab sheet 4 (weeks 8 and 9)

Last edited: 15/07/2025

Make reasonable assumptions if not explicitly stated and state such assumptions to your

demonstrator when getting marked.

Task 1 (20%)

Write a programme that slowly increases the brightness of LEDs D1-D4 on the coast

board and LD2 on the NUCELO board. Once 100% brightness is reached, slowly decrease

the brightness back to 0% and repeat the process. You must use hardware PWM if the

corresponding microcontroller pins have such hardware PWM support. For pins without

such hardware PWM, you should implement the PWM signal using software.

Task 2 (20%)

Write a programme that takes a frequency value (integer) from the user through the

keypad and then generates a sound wave of the requested frequency from the buzzer. The

user input must be interactively displayed on the LCD. The '*' key should be used as a

backspace. Pressing the SW1 button should start generating the sound and stop taking

any keypresses. Pressing the SW2 button should stop the sound and take a new frequency input. Note that the sound that you generate should be in the form of short

beeps with sufficient silence between the delays, so that it is not that unpleasant (please

do not do a continuous beep).

Task 3 (20%)

Write a programme that illuminates the LEDs on the board (you can limit yourself to pins

that support hardware PWM), based on the level of light intensity as detected by one of

the LDRs of your choice. The level of brightness of the LEDs should be proportional to the

level of darkness.

Task 4 (20%)

Write a programme that rotates the motor on the board when the SW1 button is pressed.

The motor should stop when the SW2 button is pressed. The SW3 button should double

the motor's current speed, while SW4 should halve it. These speed adjustments should

be repeatable as long as they remain within practical limits. The motor's current speed, in revolutions per minute (RPM), must be displayed on the LCD screen.

Task 5 (20%)

Write a programme that takes commands in the form of the following example from a user through the UART, executes them and sends the result back to the user through UART.

read LDRR24 5 3

The second argument can be LDRR24 or LDRR32. The third argument (value 5 in the example) is the number of readings required to take. The fourth argument (value 3 in the example) is the number of seconds between consecutive readings. This example requests that 5 readings be taken from the LDRR24 with 3-second intervals.

Based on the command provided by the user, the programme should take readings from the requested LDR and send the results back. You should start the relevant ADC only when a command has been issued. That is, you shouldn't be simply reading the ADC in a while loop.

Assume that the arguments 3 and 4 are integers and the arguments are separated by spaces. Assume that the user doesn't make any errors in input commands. Send the readings as soon as they are taken, rather than waiting until all the readings are taken. Make sure to interactively show what the user is typing.

See the example below from the serial terminal:

read LDRR24 3 4 1032 1033 8000 read LDRR32 5 3 800 801 800 802 805

Hint: Scan UART character by character until the "enter key" press is detected.