
Working with REST APIs in
SENG Workshop 3

Fethi Rabhi

Acknowledgement: to all SENG3011 mentors who have helped putting
these slides together

1

Software components

2

Designing Software Using
Components

• High quality code
– Modular
– High cohesion
– Low coupling

• Many technologies available for developing
components
– Library components (C# DLL file, JAR File etc.)
– Components are an essential part of web services

3

Multiple reuse of a component

Software
Component

Plug-in in
a larger

application

Back-end
service in
web app

Part of
workflow

4

Example 1: Java component technology

• Components packaged as .jar files
• To create a .jar file

– Export from IDE (e.g. Eclipse)
– Use command line:

• jar cf jar-file input-file(s)
• Available with popular build tools:

– Maven
– Ant
– Buildr
– … …

5

Example 2: C# and .NET

• Component technology for Windows systems
• DLL = basic component that can be executed by

a Windows application
• Many utilities for creating and managing

components
• DLL lifecycle

– Create C# Classes
– Generate DLL file
– Generate EXE file
– Run the EXE file

6

Service Oriented Computing

7

• The Programmable Web use the same technologies
and communication protocols of the WWW

• Difference:
– The data is not delivered necessarily for human

consumption
– A client can be implemented using any programming

language
• Technologies

– Services and APIs
– Transport protocol: Hyper Text Transfer Protocol (HTTP)
– Clients: Browser, Java, Web API, …
– Data serialization languages

The Concept of Programmable
Web

8

• ‘logical units with clearly defined interfaces(API):’
– What functionality they perform
– Which data formats they accept and produce

• They are application independent
• Services can be used by other services and

applications
• Web services are not prepared to human

consumption (in contrast to websites).
– Web services require an architectural style to provide

clear and unambiguous interaction (clearly defined
interfaces).

Web Services

9

• Application Programming Interfaces
– A good analogy is the electricity wall

socket
• Endpoints addressable over the Web

are called Web APIs.
• How the service is exposed:

• Protocol semantics
• Application semantics

• We frequently use Web API instead of
Web services but they are not the
same

• There are many technologies that
support Web Services (we will be
focusing on the RESTfull Web API)

Web API

- Service: Electricity
- Conforms to specs:
220V, 60Hz …
- Fitting patterns are

defined
- Through the standard

interface all connecting
equipment (consumers)
work

- A layer of abstraction

10

• Making functionality available over the web changed the way
software functionality delivered.

• If you needed a CRM functionality in 1990s you had to invest
in hardware, software, the CRM experts, training …

• Today’s CRM providers like Salesforce use cloud to deliver
the functionality.
– Multi-tennacy – sharing common infrastructure among customers.
– Using web browsers was the norm to access this functionality
– Today customers are granted API level access

• Non salesforce applications can easily use the services.

• Thousands of companies are changing their strategies
toward delivering functionality through Web APIs:
– https://www.programmableweb.com/apis/directory is a good

source

Market Impact

11

https://www.programmableweb.com/apis/directory

Example of a process using multiple
web services

12

Designing complex systems using
Web services

• Using Web services must be done with care
• Issues when defining individual services

– Synchronous vs asynchronous services
– State management and scalability
– Data management

• Linking multiple services together
– Can use Business Process Management Framework

• BPEL/BPMN
– Can use a workflow language

• TAVERNA

• Several design patterns exist 13

• More suitable:
– where real-time interaction with minimal delays is

needed,
– where subsequent actions are dependent on the

response received for the previous message
transferred,

– further actions need to be performed in sequential
manner.

• Example:
– ATM machine need to interact with the back-end

system to check the available balance.

Synchronous Web services

14

• More suitable:
– where systems have long running jobs and there is no

need of real-time responses.
– when you need low latency – blocking a call may slow

the system
• Example:

– An ERP system needs to publish some information so
that any interested parties can subscribe to that and
get the updates.

Asynchronous web services

15

• Stateless:
– Deals with behavior, pure business logic
– Sending an email
– Displaying the fuel consumption for the moment
– HTTP protocol

• Stateful:
– Deals with keeping records of things
– Expecting an acknowledgement for the email sent
– Displaying the average fuel consumption for a period.
– FTP protocol

Separation of Stateful from
Stateless

16

• Decoupling behaviour from state enable us to
scale up the stateless processes.

• Scaling up stateless processes is easy.
– You can run KM to Miles Conversion on multiple

nodes easily
– Various platforms exists: AWS Lambda is a popular

example
• Scaling up the stateful part is difficult

– The aggregate is the only strongly consistent truth
– Single active instance can run at a time
– Usually scaled up by using active/passive availability

clusters
• (Establishing fully redundant instances of nodes, brought

online when its associated primary node fails)

Scaling up

17

Orchestration
– Create a central control

mechanism within:
CustomerService

– Once the process
initiated
CustomerService send
request to other
services.

– We can model into code
or use BPM software.

– - Tightly coupled
– - High cost to change
– + Can monitor the status

of the process. 18

Choreography
• Customer Service

created the event.
• All services subscribe

to this event react to
it.

• + Loosely coupled
• + Easy to change
• - Additional work is

needed to monitor the
status of the process.

19

Request/Response Collaboration Pattern

• Well aligned with
synchronous
communication

• For asynchronous
applications
adaptation is
required:
– Start the operation
– Register a call back

• ask server to notify
when the operation
complete

1-Customer orders an item
2-Payment is processed
3-The system check the availability and
the need for reorder

20

Event based collaboration pattern

• Process announce
what happened

• Other services
decides what to do

• Business logic is
distributed

• Highly decoupled –
can add new services
easily.

- The UI Service raises Order-Requested
event

- Orders Service and the Stock Service react
to the raised event.

- Order service raise Order-Confirmed event
- UI Service reacts to Order-Confirmed

21

Reactive Systems
• Systems that are* :

– Responsive,
– Resilient,
– Elastic and
– Message Driven

• Asynchronous, nonblocking
message-passing that
establish a boundary between
components…

• that ensures loose coupling,
isolation and location
transparency.

22

• Microservices are services modeled after a business
domain

• Conwey’s Principle:
– Any organization that designs a system (defined more

broadly here than just information systems) will inevitably
produce a design whose structure is a copy of the
organization’s communication structure

• Information Systems Department of an Army:
– How will the communication structure shape?

• Command and control
– Who will be the project manager?

• The highest ranking officer

• A startup ? Will you give the same answers?

Microservices

23

REST APIs

24

• A way of providing interoperability between computer
systems on the Internet.
– REST-compliant Web services allow requesting systems to access

and manipulate textual representations of Web resources using a
uniform and predefined set of stateless operations.

• An architectural style of building networked systems
– a “design guideline” for building a system (or a service in our context)

on the Web
– defines a set of architectural constraints in a protocol

• REST is built on standards:
– HTTP, URL, XML/HTML/JPEG/ … (resource representations)
– text/xml, text/html, image/gif, image/jpeg, … (MIME Types)

• REST itself is not an official standard specification

Representational State Transfer
(REST)

REST video: https://www.youtube.com/watch?v=7YcW25PHnAA)
25

• ROA:
– Architecture for creating Web APIs that conforms to the REST

design principles
– Base technologies: URLs, HTTP and Hypermedia

• Web Services with a ROA architecture are called
RESTful Web Services (Restful Web APIs)

• HTTP requests are used to manipulate the state of a
resource
– A resource is something that can be stored on a computer and

represented as a stream of bits.
– Resource-Oriented refers to modelling each entities as

Resources which can be accessed by at least one identifier.
URI: Identifies the resource (SENG3011) to manipulate

http://www.unsw.edu.au/course/SENG3011
HTTP method: The action to be performed to manipulate the
resource

Resource Oriented Architectures

26

• A thing that users want to create a link to,
retrieve, annotate, or perform other operations
on.

• A resource:
– is unique (i.e., can be identied uniquely)
– has at least one representation,
– has one or more attributes beyond ID
– has a potential schema, or definition
– can provide context
– is reachable within the addressable universe

• collections, relationships (structural, semantic)

Resource definition

27

• Addressability - Every object and resource in your
system is reachable through a unique identifier

• Uniform interface – Deals with how a client talk to a
service and understands what to tell the service.
Also the service should be able to understand what
clients wants to say.

• Statelessness - All calls from clients are independent,
every HTTP request happens in a complete isolation.

• Connectedness - APIs become more self-descriptive
and discoverable when links are returned in the
response

ROA Properties

28

REST

Most common REST operators
GET

Retrieve a representational of resource (without changing it)
PUT

Create or replace a resource by supplying representational to it
DELETE

Ensure that a given resource is no longer exist
POST

Augment a resource with additional representational

29

REST Parameters

30

• REST APIs have four types of parameters:
– Header parameters: Parameters included in the request header,

usually related to authorization.
– Path parameters: Parameters within the path of the endpoint,

before the query string (?). These are usually set off within curly
braces.

– Query string parameters: Parameters in the query string of the
endpoint, after the ?.

– Request body parameters: Parameters included in the request
body. Usually submitted as JSON.

REST Example
• HTTP Method

– POST
• Request URL

– http://<myserver.ulr>/unsw/examples/001?course=seng3011&term=20T1

• Request Header
– Content-Type: application/json
– Accept: text/html

• Request body
{
"course_code": "seng3011",
”title": "Software Engineering Workshop 3",
"url": ”http://cse.unsw.edu/au/~se3011"
}

31

Path
Parameters Query Parameters

Content type that is used in the body
of request.

Content types that are valid in the
response message.

• Response

HTTP/1.1 200 OK
Content-Type: text/html

<html>
.
.
</html>

Status code

Resource Representation

32

• A resource needs a representation for it to be sent to the client
a representation of a resource - some data about the ’current state’ of a
resource
E.g., On a library system, books can have representations in :–
• XML files
• web pages
• Json files
• printer-friendly-format, etc.
when a representation of a resource may also contain metadata about the
resource (e.g., books: book itself + metadata such as cover-image, reviews,
other related books) - relationships.
Representations can flow the other way too: a client send a new or updated
’representation’ of a resource and the server creates/updates the resource.

Response Codes

33

• Using proper status codes. Using them consistently in
your responses will help the client understand the
interactions better.

• The HTTP specification has a guideline for the codes
• Utilize these codes but restrict the number of codes used

for clean/clear responses.
• Few examples:

Code Description When
200 OK All good
304 Not modified cached
404,
401,
403

Not found,
Unauthorized,
Forbidden

For authentication
and authorization

Response Format

34

• Response format of API is designed for client’s
needs

• Should support multiple formats and allow the
client content negotiation (i.e. Content-Type)

• Use simple objects.
• Request for a single resource should return a

single object.
• Request for multiple resources can return a

collection - wrapped in a container (e.g. json
array).

REST architecture frameworks

35

• Java’s restlet
– Operators, Resources, Representations are all class entities
– Highly pluggable implementation to support extensibility and

interfaces to other web technologies such as Atom, GWT,
JSON,XML,SSL,Jetty, etc..

• Frameworks in other languages include:
– Django – in python
– Flask – in python
– Java Spring framework
– Restify in Nodejs

• Few REST clients:
– cURL
– Postman
– Insomnia

Tips for SENG3011

36

Question: How to document REST APIs?

SWAGGER

• To enable testing, all APIs and their
documentation will be made available via
SWAGGER

• More information on using SWAGGER
– https://swagger.io/tools/open-source/getting-started/
– https://idratherbewriting.com/learnapidoc/pubapis_sw

agger.html
– https://www.baeldung.com/swagger-2-documentation-

for-spring-rest-api

37

https://swagger.io/tools/open-source/getting-started/
https://idratherbewriting.com/learnapidoc/pubapis_swagger.html
https://www.baeldung.com/swagger-2-documentation-for-spring-rest-api

More on SWAGGER
• Swagger Editor

– This is the "official" text editor that can be used
immediately to create documentation by hand.

– Demo version at https://editor.swagger.io
– Has example already populated (data saved locally in

the web browser, not the cloud).
– Can be downloaded and installed locally

from https://swagger.io/tools/swagger-editor/download/
• OpenAPI Specification

– The official specification reference currently version
3.0.2: https://swagger.io/specification/

– Students encouraged learn the latest 3.0 version
because better than v2.0 but many tools still based on
2.0 38

http://editor.swagger.io/
https://swagger.io/tools/swagger-editor/download/
https://swagger.io/specification/

39

Question: How to handle input files and output
files REST-fully ?

Solution #01
Enable File upload via REST commands

Input:
• Upload entire files to the web service.

– E.G. upload pictures to Facebook, or files to Dropbox
– Granted there are UIs to facilitate this, and for this first

deliverable there is no user interface.
• Achieved through standard HTTP request verbs

– E.G. POST , PUT
– Make clear API(s) using HTTP for file uploads.

40

Solution #01
Enable File upload via REST commands

Output:
• Teams have more flexibility in module output.
• OPTION #01

– Return output as JSON response.
– This is a very common return format for API calls in the real

world.
• OPTION #02

– Return download links to output files.
– Links would be returned as part of a JSON response (as

opposed to all the information being contained in a JSON
response as with the first option).

• SUGGESTION Examine the responses from API calls
from available services like Twitter

41

Solution #02
Multipart / form-data

• Sending multipart / form-data message
• Very complicated!

42

Solution for SENG Workshops

• Both solutions are applicable
– Creative, alternative and effective software designs are always

impressive (to us).
• There will be points allocated to the adoption rate of your

modules.
– Practical indicator of design quality => How many people use it!

• Document Well
– Your solution can’t be used if no one knows how to use it

properly!
• ASK QUESTIONS!!!

– Filling in gaps in your knowledge and information provided :
That’s part of the real process out there

– Asking effective questions early is paramount

43

Common Mistakes
• Component run accurately, but log file incomplete

or doesn’t exist
• No clear instructions on how to execute the

component.
• The group said the version on their website is the

wrong version, they will upload the correct version
as soon as possible.

• Clear execution instructions, but lack of unit
testing, errors generated when running the
component

• Output doesn’t change when changing input
parameters (i.e. hardcoded the parameters)

• Who is doing what in the group, clarify from the
beginning don’t leave it to late.

44

• www.programmableweb.com
• Richardson and Ruby, RESTful Web Services

by, O'Reilly, 2007
(http://oreilly.com/catalog/9780596529260)

Some References

45

http://www.programmableweb.com/

	Working with REST APIs in SENG Workshop 3
	Software components
	Designing Software Using Components
	Multiple reuse of a component
	Example 1: Java component technology
	Example 2: C# and .NET
	Service Oriented Computing�
	The Concept of Programmable Web
	Web Services
	Web API
	Market Impact
	Example of a process using multiple web services
	Designing complex systems using Web services
	Synchronous Web services
	Asynchronous web services
	Separation of Stateful from Stateless
	Scaling up
	Orchestration
	Choreography
	Request/Response Collaboration Pattern
	Event based collaboration pattern
	Reactive Systems
	Microservices
	REST APIs
	Representational State Transfer (REST)
	Resource Oriented Architectures
	Resource definition
	ROA Properties
	Slide Number 29
	REST Parameters
	REST Example
	Resource Representation
	Response Codes
	Response Format
	REST architecture frameworks
	Tips for SENG3011
	SWAGGER
	More on SWAGGER
	Slide Number 39
	Solution #01�Enable File upload via REST commands
	Solution #01�Enable File upload via REST commands
	Solution #02�Multipart / form-data
	Solution for SENG Workshops
	Common Mistakes
	Some References

