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Software components
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Designing Software Using 
Components

• High quality code
– Modular
– High cohesion
– Low coupling

• Many technologies available for developing 
components
– Library components (C# DLL  file, JAR File etc.) 
– Components are an essential part of web services
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Example 1: Java component technology

• Components packaged as .jar files
• To create a .jar file

– Export from IDE (e.g. Eclipse)
– Use command line:

• jar  cf jar-file  input-file(s)
• Available with popular build tools:

– Maven
– Ant
– Buildr
– … …
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Example 2: C# and .NET

• Component technology for Windows systems
• DLL = basic component that can be executed by 

a Windows application
• Many utilities for creating and managing 

components
• DLL lifecycle

– Create C# Classes
– Generate DLL file
– Generate EXE file 
– Run the EXE file
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Service Oriented Computing
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• The Programmable Web use the same technologies 
and communication protocols of the WWW

• Difference:
– The data is not delivered necessarily for human 

consumption
– A client can be implemented using any programming 

language
• Technologies

– Services and APIs
– Transport protocol: Hyper Text Transfer Protocol (HTTP)
– Clients: Browser, Java, Web API, …
– Data serialization languages

The Concept of Programmable 
Web
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• ‘logical units with clearly defined interfaces(API):’
– What functionality they perform
– Which data formats they accept and produce

• They are application independent
• Services can be used by other services and 

applications
• Web services are not prepared to human 

consumption (in contrast to websites).
– Web services require an architectural style to provide  

clear and unambiguous interaction (clearly defined 
interfaces).

Web Services
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• Application Programming Interfaces
– A good analogy is the electricity wall 

socket
• Endpoints addressable over the Web 

are called Web APIs. 
• How the service is exposed:

• Protocol semantics
• Application semantics

• We frequently use Web API instead of 
Web services but they are not the 
same

• There are many technologies that 
support Web Services (we will be 
focusing on the RESTfull Web API)

Web API

- Service: Electricity
- Conforms to specs:
220V, 60Hz …
- Fitting patterns are 

defined
- Through the standard 

interface all connecting 
equipment (consumers) 
work

- A layer of abstraction 
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• Making functionality available over the web changed the way 
software functionality delivered.

• If you needed a CRM functionality in 1990s you had to invest 
in hardware, software, the CRM experts, training …

• Today’s CRM providers like Salesforce use cloud to deliver 
the functionality.
– Multi-tennacy – sharing common infrastructure among customers.
– Using web browsers was the norm to access this functionality
– Today customers are granted API level access

• Non salesforce applications can easily use the services.

• Thousands of companies are changing their strategies 
toward delivering functionality through Web APIs:
– https://www.programmableweb.com/apis/directory is a good 

source

Market Impact
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Example of a process using multiple 
web services
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Designing complex systems using 
Web services

• Using Web services must be done with care
• Issues when defining individual services

– Synchronous vs asynchronous services
– State management and scalability
– Data management

• Linking multiple services together
– Can use Business Process Management Framework

• BPEL/BPMN
– Can use a workflow language

• TAVERNA

• Several design patterns exist 13



• More suitable:
– where real-time interaction with minimal delays is 

needed, 
– where subsequent actions are dependent on the 

response received for the previous message 
transferred,

– further actions need to be performed in sequential 
manner.

• Example:
– ATM machine need to interact with the back-end 

system to check the available balance. 

Synchronous Web services
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• More suitable:
– where systems have long running jobs and there is no 

need of real-time responses. 
– when you need low latency – blocking a call may slow 

the system
• Example:

– An ERP system needs to publish some information so 
that any interested parties can subscribe to that and 
get the updates.

Asynchronous web services
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• Stateless:
– Deals with behavior, pure business logic
– Sending an email  
– Displaying the fuel consumption for the moment
– HTTP protocol

• Stateful: 
– Deals with keeping records of things
– Expecting an acknowledgement for the email sent 
– Displaying the average fuel consumption for a period.
– FTP protocol

Separation of Stateful from 
Stateless
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• Decoupling behaviour from state enable us to 
scale up the stateless processes.

• Scaling up stateless processes is easy.
– You can run KM to Miles Conversion on multiple 

nodes easily
– Various platforms exists: AWS Lambda is a popular 

example
• Scaling up the stateful part is difficult 

– The aggregate is the only strongly consistent truth
– Single active instance can run at a time
– Usually scaled up by using active/passive availability 

clusters
• (Establishing fully redundant instances of nodes, brought 

online when its associated primary node fails)

Scaling up
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Orchestration
– Create a central control 

mechanism within:
CustomerService

– Once the process 
initiated 
CustomerService send 
request to other 
services.

– We can model into code 
or use BPM software.

– - Tightly coupled 
– - High cost to change
– + Can monitor the status 

of the process. 18



Choreography
• Customer Service 

created the event.
• All services subscribe 

to this event react to 
it.

• + Loosely coupled
• + Easy to change
• - Additional work is 

needed to monitor the 
status of the process.
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Request/Response Collaboration Pattern

• Well aligned with 
synchronous 
communication

• For asynchronous 
applications 
adaptation is 
required:
– Start the operation
– Register a call back 

• ask server to notify 
when the operation 
complete

1-Customer orders an item
2-Payment is processed
3-The system check the availability and
the need for reorder
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Event based collaboration pattern

• Process announce 
what happened

• Other services 
decides what to do

• Business logic is 
distributed

• Highly decoupled –
can add new services 
easily.

- The UI Service raises Order-Requested 
event

- Orders Service and the Stock Service react 
to the raised event.

- Order service raise Order-Confirmed event
- UI Service reacts to Order-Confirmed
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Reactive Systems
• Systems that are* :

– Responsive, 
– Resilient, 
– Elastic and 
– Message Driven

• Asynchronous, nonblocking
message-passing that 
establish a boundary between 
components…

• that ensures loose coupling, 
isolation and location 
transparency.
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• Microservices are services modeled after a business 
domain

• Conwey’s Principle:
– Any organization that designs a system (defined more 

broadly here than just information systems) will inevitably 
produce a design whose structure is a copy of the 
organization’s communication structure

• Information Systems Department of an Army:
– How will the communication structure shape?

• Command and control
– Who will be the project manager?

• The highest ranking officer

• A startup ? Will you give the same answers?

Microservices
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REST APIs
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• A way of providing interoperability between computer 
systems on the Internet.
– REST-compliant Web services allow requesting systems to access 

and manipulate textual representations of Web resources using a 
uniform and predefined set of stateless operations. 

• An architectural style of building networked systems
– a “design guideline” for building a system (or a service in our context) 

on the Web
– defines a set of architectural constraints in a protocol 

• REST is built on standards: 
– HTTP, URL, XML/HTML/JPEG/ … (resource representations)
– text/xml, text/html, image/gif, image/jpeg, … (MIME Types)

• REST itself is not an official standard specification

Representational State Transfer 
(REST)

REST video: https://www.youtube.com/watch?v=7YcW25PHnAA)
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• ROA:
– Architecture for creating Web APIs that conforms to the REST 

design principles
– Base technologies: URLs, HTTP and Hypermedia

• Web Services with a ROA architecture are called 
RESTful Web Services (Restful Web APIs)

• HTTP requests are used to manipulate the state of a 
resource
– A resource is something that can be stored on a computer and 

represented as a stream of bits.
– Resource-Oriented refers to modelling each entities as 

Resources which can be accessed by at least one identifier.
URI: Identifies the resource (SENG3011) to manipulate

http://www.unsw.edu.au/course/SENG3011
HTTP method: The action to be performed to manipulate the 
resource

Resource Oriented Architectures
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• A thing that users want to create a link to, 
retrieve, annotate, or perform other operations 
on.

• A resource:
– is unique (i.e., can be identied uniquely)
– has at least one representation,
– has one or more attributes beyond ID
– has a potential schema, or definition
– can provide context
– is reachable within the addressable universe

• collections, relationships (structural, semantic)

Resource definition

27



• Addressability - Every object and resource in your 
system is reachable through a unique identifier

• Uniform interface – Deals with how a client talk to a 
service and understands what to tell the service.
Also the service should be able to understand what 
clients wants to say.

• Statelessness - All calls from clients are independent, 
every HTTP request happens in a complete isolation.

• Connectedness - APIs become more self-descriptive 
and discoverable when links are returned in the 
response

ROA Properties
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REST

Most common REST operators
GET

Retrieve a representational of resource (without changing it)
PUT

Create or replace a resource by supplying representational to it
DELETE

Ensure that a given resource is no longer exist
POST

Augment a resource with additional representational
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REST Parameters
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• REST APIs have four types of parameters:
– Header parameters: Parameters included in the request header, 

usually related to authorization.
– Path parameters: Parameters within the path of the endpoint, 

before the query string (?). These are usually set off within curly 
braces.

– Query string parameters: Parameters in the query string of the 
endpoint, after the ?.

– Request body parameters: Parameters included in the request 
body. Usually submitted as JSON.



REST Example
• HTTP Method

– POST
• Request URL

– http://<myserver.ulr>/unsw/examples/001?course=seng3011&term=20T1

• Request Header
– Content-Type: application/json
– Accept: text/html

• Request body
{
"course_code": "seng3011", 
”title": "Software Engineering Workshop 3", 
"url": ”http://cse.unsw.edu/au/~se3011"
}
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Path 
Parameters Query Parameters

Content type that is used in the body 
of request.

Content types that are valid in the 
response message.

• Response

HTTP/1.1 200 OK
Content-Type: text/html

<html>
.
.
</html>

Status code



Resource Representation

32

• A resource needs a representation for it to be sent to the client 
a representation of a resource - some data about the ’current state’ of a 
resource 
E.g., On a library system, books can have representations in :–
• XML files
• web pages
• Json files 
• printer-friendly-format, etc. 
when a representation of a resource may also contain metadata about the 
resource (e.g., books: book itself + metadata such as cover-image, reviews, 
other related books) - relationships. 
Representations can flow the other way too: a client send a new or updated 
’representation’ of a resource and the server creates/updates the resource. 



Response Codes
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• Using proper status codes. Using them consistently in 
your responses will help the client understand the 
interactions better.

• The HTTP specification has a guideline for the codes 
• Utilize these codes but restrict the number of codes used 

for clean/clear responses.
• Few examples:

Code Description When
200 OK All good
304 Not modified cached
404, 
401, 
403

Not found, 
Unauthorized, 
Forbidden

For authentication 
and authorization



Response Format
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• Response format of API is designed for client’s 
needs

• Should support multiple formats and allow the 
client content negotiation (i.e. Content-Type)

• Use simple objects. 
• Request for a single resource should return a 

single object. 
• Request for multiple resources can return a 

collection - wrapped in a container (e.g. json 
array). 



REST architecture frameworks
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• Java’s restlet
– Operators, Resources, Representations are all class entities
– Highly pluggable implementation to support extensibility and 

interfaces to other web technologies such as Atom, GWT, 
JSON,XML,SSL,Jetty, etc..

• Frameworks in other languages include:
– Django – in python
– Flask – in python 
– Java Spring framework 
– Restify in Nodejs 

• Few REST clients:
– cURL
– Postman
– Insomnia



Tips for SENG3011
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Question: How to document REST APIs?



SWAGGER

• To enable testing, all APIs and their 
documentation will be made available via 
SWAGGER

• More information on using SWAGGER
– https://swagger.io/tools/open-source/getting-started/
– https://idratherbewriting.com/learnapidoc/pubapis_sw

agger.html
– https://www.baeldung.com/swagger-2-documentation-

for-spring-rest-api
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More on SWAGGER
• Swagger Editor

– This is the "official" text editor that can be used 
immediately to create documentation by hand. 

– Demo version at https://editor.swagger.io
– Has example already populated (data saved locally in 

the web browser, not the cloud). 
– Can be downloaded and installed locally 

from https://swagger.io/tools/swagger-editor/download/
• OpenAPI Specification

– The official specification reference currently version 
3.0.2: https://swagger.io/specification/

– Students encouraged learn the latest 3.0 version 
because better than v2.0 but many tools still based on 
2.0 38
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Question: How to handle input files and output 
files REST-fully ?



Solution #01
Enable File upload via REST commands

Input:
• Upload entire files to the web service.

– E.G. upload pictures to Facebook, or files to Dropbox
– Granted there are UIs to facilitate this, and for this first 

deliverable there is no user interface.
• Achieved through standard HTTP request verbs

– E.G. POST , PUT
– Make clear API(s) using HTTP for file uploads. 
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Solution #01
Enable File upload via REST commands

Output:
• Teams have more flexibility in module output.
• OPTION #01

– Return output as JSON response.
– This is a very common return format for API calls in the real 

world.
• OPTION #02

– Return download links to output files.
– Links would be returned as part of a JSON response (as 

opposed to all the information being contained in a JSON 
response as with the first option).

• SUGGESTION Examine the responses from API calls 
from available services like Twitter
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Solution #02
Multipart / form-data

• Sending multipart / form-data message
• Very complicated!
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Solution for SENG Workshops

• Both solutions are applicable
– Creative, alternative and effective software designs are always 

impressive (to us).
• There will be points allocated to the adoption rate of your 

modules.
– Practical indicator of design quality => How many people use it!

• Document Well
– Your solution can’t be used if no one knows how to use it 

properly!
• ASK QUESTIONS!!!

– Filling in gaps in your knowledge and information provided : 
That’s part of the real process out there

– Asking effective questions early is paramount
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Common Mistakes
• Component run accurately, but log file incomplete 

or doesn’t exist 
• No clear instructions on how to execute the 

component.  
• The group said the version on their website is the 

wrong version, they will upload the correct version 
as soon as possible. 

• Clear execution instructions, but lack of unit 
testing, errors generated when running the 
component 

• Output doesn’t change when changing input 
parameters (i.e. hardcoded the parameters)

• Who is doing what in the group, clarify from the 
beginning don’t leave it to late.
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• www.programmableweb.com
• Richardson and Ruby, RESTful Web Services 

by, O'Reilly, 2007 
(http://oreilly.com/catalog/9780596529260)

Some References
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