Dafny Quick Reference - Microsoft Research 4/02/13 2:09 PM

Microsoft:

Resea rCh Search Microsoft Research jo)
Videos Projects Publications People Downloads

. Be an insider
Home Our Research Connections Careers Hub) -
The Inside Microsoft Research blog
Worldwide Labs Research Areas Research Groups
@ > Projects > Dafny: A language and program verifier for functional correctness > Dafny Quick Reference ¥ n S f B | <] é |

Dafny Quick Reference

This page illustrates many of the most common language features in Dafny.

Programs

At the top level, a Dafny program (stored as a file with extension .dfy) is a set of
declarations. The declarations introduce fields, methods, and functions, as well as
classes and inductive datatypes, where the order of introduction is irrelevant. A class
also contains a set of declarations, introducing fields, methods, and functions. Fields,
methods, and functions declared outside a class go into an implicit class called
_default, giving the appearance of the program having global variables, procedures,
and functions. If the program contains a unique parameter-less method called Main,
then program execution starts there, but it is not necessary to have a main method
to do verification.

Comments start with // and go to the end of the line, or start with /* and end with
*/ and can be nested.

Fields

A field x of some type T is declared as:
var x: T;

Unlike for local variables and bound variables, the type is required and will not be
inferred. The field can be declared to be a ghost field by preceding the declaration
with the keyword ghost. Dafny’s types include bool for booleans, int for
mathematical (that is, unbounded) integers, user-defined classes and inductive
datatypes, set<T> for a finite mathematical (immutable) set of T values (where T is
any type), and seq<T> for a mathematical (immutable) sequence of T values. In
addition, there are array types (which are like predefined “class” types) of one and
more dimensions, written array<T>, array2<T>, array3<T>, The type object is a
supertype of all class types, that is, an object denotes any reference, including null.
Finally, the type nat denotes a subrange of int, namely the non-negative integers.

Methods

A method declaration has the form:

method M(a: A, b: B, c: C) returns (x: X, y: Y, z: Y)
requires Pre;
modifies Frame;
ensures Post;
decreases Rank;
{
Body
>

where a, b, c are the method’s in-parameters, X, y, z are the method’s out-
parameters, Pre is a boolean expression denoting the method’s precondition, Frame
denotes a set of objects whose fields may be updated by the method, Post is a
boolean expression denoting the method’s postcondition, Rank is the method’s
variant function, and Body is a statement that implements the method. Frame can
be a list of expressions, each of which is a set of objects or a single object, the latter
standing for the singleton set consisting of that one object. The method’s frame is
the union of these sets, plus the set of objects allocated by the method body. For
example, if c and d are parameters of a class type C, then

modifies {c, d};

http://research.microsoft.com/en-us/projects/dafny/reference.aspx Page 1 of 6

http://research.microsoft.com/c/1040
http://research.microsoft.com/c/1170
http://research.microsoft.com/en-us/projects/default.aspx
http://research.microsoft.com/en-us/projects/dafny/default.aspx
http://research.microsoft.com/c/1047
javascript:rmc.Share('T');void(0);
javascript:rmc.Share('F');void(0);
javascript:rmc.Share('D');void(0);
javascript:rmc.Share('d');void(0);
http://research.microsoft.com/c/1057
javascript:rmc.Email();void(0);
javascript:rmc.Print();void(0);
http://research.microsoft.com/c/1046
http://research.microsoft.com/c/1011
http://research.microsoft.com/c/1012
http://research.microsoft.com/c/1013
http://research.microsoft.com/c/1000
http://research.microsoft.com/c/1010
http://research.microsoft.com/c/1020
http://research.microsoft.com/c/1030
http://research.microsoft.com/c/1180

Dafny Quick Reference - Microsoft Research 4/02/13 2:09 PM

modifies {c} + {d};
modifies ¢, {d};
modifies ¢, d;

all mean the same thing.

If omitted, the pre- and postconditions default to true and the frame defaults to the
empty set. The variant function is a list of expressions, denoting the unending
lexicographic tuple consisting of the given expressions followed implicitly by “top”
elements. If omitted, Dafny will guess a variant function for the method, namely the
lexicographic tuple that starts with the list of the method’s in-parameters.

A method can be declared as ghost by preceding the declaration with the keyword
ghost. By default, a method has an implicit receiver parameter, this. This parameter
can be removed by preceding the method declaration with the keyword static. A
static method M in a class C can be invoked by C.M(...).

In a class, a method can be declared to be a constructor method by replacing the
keyword method with the keyword constructor. A constructor can only be called at
the time an object is allocated (see object-creation examples below), and for a class
that contains one or more constructors, object creation must be done in conjunction
with a call to a constructor.

Functions

A function declaration has the form:

function F(a: A, b: B, c: C): T
requires Pre;
reads Frame;
ensures Post;
decreases Rank;
{
Body
b

where a, b, c are the method’s parameters, T is the type of the function’s result, Pre
is a boolean expression denoting the function’s precondition, Frame denotes a set of
objects whose fields the function body may depend on, Post is a boolean expression
denoting the function’s postcondition, Rank is the function’s variant function, and
Body is an expression that defines the function. The precondition allows a function to
be partial, that is, the precondition says when the function is defined (and Dafny will
verify that every use of the function meets the precondition). The postcondition is
usually not needed, since the body of the function gives the full definition. However,
the postcondition can be a convenient place to declare properties of the function that
may require an inductive proof to establish. For example:

function Factorial(n: int): int
requires 0 <= n;
ensures 1 <= Factorial(n);
{

if n == 0 then 1 else Factorial(n-1) * n

}

says that the result of Factorial is always positive, which Dafny verifies inductively
from the function body. To refer to the function’s result in the postcondition, use the
function itself, as shown in the example.

By default, a function is ghost, and cannot be called from non-ghost code. To make
it non-ghost, replace the keyword function with the two keywords function method.

By default, a function has an implicit receiver parameter, this. This parameter can be
removed by preceding the function declaration with the keyword static. A static

function F in a class C can be invoked by F.M(...). This can give a convenient way to
declare a number of helper functions in a separate class.

Classes

http://research.microsoft.com/en-us/projects/dafny/reference.aspx Page 2 of 6

Dafny Quick Reference - Microsoft Research 4/02/13 2:09 PM

A class is defined as follows:

class C {
// member declarations go here

}

where the members of the class (fields, methods, and functions) are defined (as
described above) inside the curly braces.

Datatypes

An inductive datatype is a type whose values are created using a fixed set of
constructors. A datatype Tree with constructors Empty and Node is declared as
follows:

datatype Tree = Empty | Node(Tree, int, Tree);

The constructors are separated by vertical bars. Parameter-less constructors need
not use parentheses, as is shown here for Empty.

For each constructor Ct, the datatype implicitly declares a boolean member Ct?,
which returns true for those values that have been constructed using Ct. For
example, after the code snippet:

var t0 := Empty;
var t1 := Node(t0, 5, t0);

the expression t1.Node? evaluates to true and t0.Node? evaluates to false. Two
datatype values are equal if they have been created using the same constructor and
the same parameters to that constructor. Therefore, for parameter-less constructors
like Empty, t.Empty? gives the same result as t == Empty.

A constructor can optionally declare a destructor for any of its parameters, which is
done by introducing a name for the parameter. For example, if Tree were declared
as:

datatype Tree = Empty | Node(left: Tree, data: int, right: Tree);

then tl.data == 5 and tl.left == t0 hold after the code snippet above.

Generics

Dafny supports generic types. That is, any class, inductive datatype, method, and
function can have type parameters. These are declared in angle brackets after the
name of what is being declared. For example:

class Multiset<T> { /*..*/ }

datatype Tree<T> = Empty | Node(Tree<T>, T, Tree<T>);
method Find<T>(key: T, collection: Tree<T>) { /*..*/ }
function IfThenElse<T>(b: bool, x: T, y: T): T { /*..*/ }

Statements

Here are examples of the most common statements in Dafny.

var LocalVariables := ExprlList;
Lvalues := ExprList;

assert BoolExpr;

print PrintList;

if (BoolExpr0) {
Stmts0

} else if (BoolExprl) {
Stmtsl

} else {
Stmts2

b

while (BoolExpr)
invariant Inv;
modifies Frame;

http://research.microsoft.com/en-us/projects/dafny/reference.aspx Page 3 of 6

Dafny Quick Reference - Microsoft Research 4/02/13 2:09 PM

decreases Rank;
{
Stmts

}

match (Expr) {

case Empty => StmtsO

case Node(l, d, r) => Stmtsl
b

break;
return;

The var statement introduces local variables (which are not allowed to shadow other
variables declared inside the same set of most tightly enclosing curly braces). Each
variable can optionally be followed by :T for any type T, which explicitly gives the
preceding variable the type T (rather than being inferred). The ExprList with initial
values is optional. To declare the variables as ghost variables, precede the
declaration with the keyword ghost.

The assignment statement assigns each right-hand side in ExprList to the
corresponding left-hand side in Lvalues. These assignments are performed in
parallel, so the left-hand sides must denote distinct L-values. Each right-hand side
can be an expression or an object creation of one of the following forms:

new T

new T.Init(ExprList)

new T[SizeExpr]

new T[SizeExpr0, SizeExprl]

The first form allocates an object of type T. The second form additionally invokes an
initialization method or constructor on the newly allocated object. The other forms
show examples of array allocations, in particular a one- and a two-dimensional array
of T values, respectively.

The entire right-hand side of an assignment can also be a method call, in which case
the left-hand sides are the actual out-parameters (omitting the := if there are no
out-parameters).

The assert statement claims that the given expression evaluates to true (which is
checked by the verifier).

The print statement outputs to standard output the values of the given print
expressions. A print expression is either an expression or a string literal (where \n is
used to denote a newline character).

The if statement is the usual one. The example shows stringing together alternatives
using else if. The else branch is optional, as usual.

The while statement is the usual loop, where the invariant declaration gives a loop
invariant, the modifies clause restricts the modification frame of the loop, and the
decreases clause introduces a variant function for the loop. By default, the loop
invariant is true, the modification frame is the same as in the enclosing context
(usually the modifies clause of the enclosing method), and the variant function is
guessed from the loop guard.

The match statement evaluates the source Expr, an expression whose type is an
inductive datatype, and then executes the case corresponding to which constructor
was used to create the source datatype value, binding the constructor parameters to
the given names.

The break statement can be used to exit loops, and the return statement can be
used to exit a method.

Expressions

The expressions in Dafny are quite similar to those in Java-like languages. Here are
some noteworthy differences.

In addition to the short-circuiting boolean operators && (and) and || (or), Dafny has

http://research.microsoft.com/en-us/projects/dafny/reference.aspx Page 4 of 6

Dafny Quick Reference - Microsoft Research 4/02/13 2:09 PM

a short-circuiting implication operator ==> and an if-and-only-if operator <==>. As
suggested by their widths, <==> has lower binding power than ==>, which in turn
has lower binding power than && and |].

Dafny comparison expressions can be chaining, which means that comparisons “in
the same direction” can be strung together. For example,

0 <=i<j<=a.length ==
has the same meaning as:
0<=i8&&i<j&&j<=a.Length && a.Length ==

Note that boolean equality can be expressed using both == and <==>. There are
two differences between these. First, == has a stronger binding power than <==>.
Second, == is chaining while <==> is associative. That is, a == b == c is the same
asa==b&&b ==, whereas a <==> b <==> cisthe sameasa <==> (b <==>
c), which is also the same as (a <==> b) <==> c.

Operations on integers are the usual ones, except that / (integer division) and %
(integer modulo) follow the Euclidean definition, which means that % always results
in @ non-negative number. (Hence, when the first argument to / or % is negative,
the result is different than what you get in C, Java, or C#, see
http://en.wikipedia.org/wiki/Modulo_operation.)

Dafny expressions include universal and existential quantifiers, which have the form:
forall x :: Expr

and likewise for exists, where x is a bound variable (which can be declared with an
explicit type, as in x: T) and Expr is a boolean expression.

Operations on sets include + (union), * (intersection), and - (set difference), as well
as the set comparison operators < (proper subset), <= (subset), their duals > and
>=, and !! (disjointness). The expression X in S says that x is a member of set S,
and x !in S is a convenient way of writing !(x in S). To make a set from some
elements, enclose them in curly braces. For example, {x,y} is the set consisting of x
and y (which is a singleton set if x == y), {x} is the singleton set containing x, and
{3} is the empty set.

Operations on sequences include + (concatenation) and the comparison operators <
(proper prefix) and <= (prefix). Membership can be checked like for sets: x in S and
x lin S. The length of a sequence S is denoted |S|, and the elements of such a
sequence have indices from 0 to less than |S|. The expression S[j] denotes the
element at index j of sequence S. The expression S[m..n], where 0 <=m <=n <=
|S|, returns a sequence whose elements are the n-m elements of S starting at index
m (that is, from S[m], S[m+1], ... up to but not including S[n]). The expression
S[m..] (often called “drop m”) is the same as S[m..|S]|], that is, it returns the
sequence whose elements are all but the first m elements of S. The expression
S[..n] (often called “take n”) is the same as S[0..n], that is, it returns the sequence
that consists of the first n elements of S. If j is a valid index into sequence S, then
the expression S[j := x] is the sequence that is like S except that it has x at index j.
Finally, to make a sequence from some elements, enclose them in square brackets.
For example, [x,y] is the sequence consisting of the two elements x and y such that
[x,y][0] == x and [X,y][1] ==y, [X] is the singleton sequence whose only element
is x, and [] is the empty sequence.

The if-then-else expression has the form:

if BoolExpr then ExprO else Elsel

where Expr0O and Exprl are any expressions of the same type. Unlike the if
statement, the if-then-else expression does not require parentheses around the

guard expression, uses the then keyword, and must include an explicit else branch.

The match statement also has an analogous match expression, which has a form
like:

match Expr
case Empty => Expr0

http://research.microsoft.com/en-us/projects/dafny/reference.aspx Page 5 of 6

http://en.wikipedia.org/wiki/Modulo_operation

Dafny Quick Reference - Microsoft Research 4/02/13 2:09 PM

case Node(l, d, r) => Exprl

As with the if statement versus the if-then-else expression, note that the match
expression does not require parentheses around the source expression and does not
surround the cases with curly braces. A match expression can only be used in the
body of function definitions, where it must either be the entire body or be the entire
expression for a case in an enclosing match expression; furthermore, the source
expression must be a parameter of the enclosing function.

Contact | Terms | Trademarks | Privacy and Cookies | Code of Conduct | Feedback ©2013 Microsoft Corporation. All rights reserved. Microsoft

http://research.microsoft.com/en-us/projects/dafny/reference.aspx Page 6 of 6

http://research.microsoft.com/c/1064
http://research.microsoft.com/c/1060
http://research.microsoft.com/c/1061
http://research.microsoft.com/c/1062
http://research.microsoft.com/c/1063
http://research.microsoft.com/c/1065
javascript:OpenFeedback();

