
COMP4418: Knowledge
Representation and Reasoning

Introduction to Prolog II

Maurice Pagnucco

School of Computer Science and Engineering
University of New South Wales

NSW 2052, AUSTRALIA

morri@cse.unsw.edu.au

Reference: Ivan Bratko, Prolog Programming for Artificial Intelligence, Addison-

Wesley, 2001. Chapter 3.

COMP4418 c©UNSW, 2017

COMP4418, Wednesday 9 August, 2017 Introduction to Prolog II 1

Prolog

� Compound terms can contain other compound terms

� A compound term can contain the same kind of term, i.e., it can be

recursive:

tree(tree(empty, jack, empty), fred, tree(empty, jill, empty))

� “empty” is an arbitrary symbol use to represent the empty tree

� A structure like this could be used to represent a binary tree that looks

like:

empty empty empty empty

jilljack

fred

COMP4418 c©UNSW, 2017 Generated: 26 July 2017

COMP4418, Wednesday 9 August, 2017 Introduction to Prolog II 2

Binary Trees

� A binary tree is either empty or it is a structure that contains data and

left and right subtrees which are also binary trees

� To test if some datum is in the tree:

in_tree(X, tree(_, X, _)).

in_tree(X, tree(Left, Y, _) :-

X \= Y,

in_tree(X, Left).

in_tree(X, tree(_, Y, Right) :-

X \= Y,

in_tree(X, Right).

COMP4418 c©UNSW, 2017 Generated: 26 July 2017

COMP4418, Wednesday 9 August, 2017 Introduction to Prolog II 3

The Size of a Tree

� tree_size(empty, 0).

tree_size(tree(Left, _, Right), N) :-

tree_size(Left, LeftSize),

tree_size(Right, RightSize),

N is LeftSize + RightSize + 1.

� The size of the empty tree is 0

� The size of a non-empty tree is the size of the left subtree plus the

size of the right subtree plus one for the current node

COMP4418 c©UNSW, 2017 Generated: 26 July 2017

COMP4418, Wednesday 9 August, 2017 Introduction to Prolog II 4

Lists

� A list may be nil or it may be a term that has a head and a tail. The

tail is another list.

� A list of numbers, [1, 2, 3] can be represented as:

list(1, list(2, list(3, nil)))

1 2 3

� Since lists are used so often, Prolog has a special notation:

[1, 2, 3] = list(1, list(2, list(3, nil)))

COMP4418 c©UNSW, 2017 Generated: 26 July 2017

COMP4418, Wednesday 9 August, 2017 Introduction to Prolog II 5

Examples of Lists

[X, Y, Z] = [1, 2, 3]? Unify the two terms on either side of the equals sign

X = 1
Y = 2 Variables match terms in corresponding positions

Z = 3

[X|Y] = [1, 2, 3]? The head and tail of a list are separated by

using ‘|’ to indicate that the term following

X = 1 the bar should unify with the tail of the list

Y = [2, 3]

[X|Y] = [1]? The empty list is written as ‘[]’

X = 1 The end of a list is usually []’

Y = []

COMP4418 c©UNSW, 2017 Generated: 26 July 2017

COMP4418, Wednesday 9 August, 2017 Introduction to Prolog II 6

More list examples

[X, Y|Z] = [fred, jim, jill, mary]? There must be at least two

elements in the list on the right

X = fred

Y = jim

Z = [jill, mary]

[X|Y] = [[a, f(e)], [n, b, [2]]]? The right hand list has two elements:

X = [a, f(e)] [a, f(e)] [n, b, [2]]

Y = [[n, b, [2]]] Y is the tail of the list,

[n, b, [2]] is just one element

COMP4418 c©UNSW, 2017 Generated: 26 July 2017

COMP4418, Wednesday 9 August, 2017 Introduction to Prolog II 7

List Membership

member(X, [X|_]).

member(X, [_|Y]) :-

member(X, Y).

� Rules about writing recursive programs:

◮ Only deal with one element at a time

◮ Believe that the recursive program you are writing has already

been written and works

◮ Write definitions, not programs

COMP4418 c©UNSW, 2017 Generated: 26 July 2017

COMP4418, Wednesday 9 August, 2017 Introduction to Prolog II 8

Appending Lists

� A commonly performed operation on lists is to append one list to the

end of another (or, concatenate two lists), e.g.,

append([1, 2, 3], [4, 5], [1, 2, 3, 4, 5]).

� Start planning by considering the simplest case:

append([], [1, 2, 3], [1, 2, 3]).

� Clause for this case:

append([], L, L).

COMP4418 c©UNSW, 2017 Generated: 26 July 2017

COMP4418, Wednesday 9 August, 2017 Introduction to Prolog II 9

Appending Lists

� Next case:

append([1], [2], [1, 2]).

� Since append([], [2], [2]):

append([H|T1], L, [H|T2]) :- append(T1, L, T2).

� Entire program is:

append([], L, L).

append([H|T1], L, [H|T2]) :-

append(T1, L, T2).

COMP4418 c©UNSW, 2017 Generated: 26 July 2017

COMP4418, Wednesday 9 August, 2017 Introduction to Prolog II 10

Reversing Lists

� rev([1, 2, 3], [3, 2, 1]).

� Start planning by considering the simplest case:

rev([], []).

� Note:

rev([2, 3], [3, 2]).

and

append([3, 2], [1], [3, 2, 1]).

COMP4418 c©UNSW, 2017 Generated: 26 July 2017

COMP4418, Wednesday 9 August, 2017 Introduction to Prolog II 11

Reversing Lists

� Entire program is:

rev([], []).

rev([A|B], C) :-

rev(B, D),

append(D, [A], C).

COMP4418 c©UNSW, 2017 Generated: 26 July 2017

COMP4418, Wednesday 9 August, 2017 Introduction to Prolog II 12

An Application of Lists

� Find the total cost of a list of items:

cost(flange, 3).

cost(nut, 1).

cost(widget, 2).

cost(splice, 2).

� We want to know the total cost of [flange, nut, widget,

splice]

total_cost([], 0).

total_cost([A|B], C) :-

total_cost(B, B_cost),

cost(A, A_cost),

C is A_cost + B_cost.

COMP4418 c©UNSW, 2017 Generated: 26 July 2017

