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Overview: Representation Techniques

Week 6

Representations for classical planning problems
deterministic environment; complete information

Week 7

Logic programs for problem representations
including planning problems, games

Week 8

First-order logic to describe dynamic environments
deterministic environment; (in-)complete information

Week 9

State transition systems to describe dynamic environments
nondeterministic environment; (in-)complete information
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Decision Making

Background: utility functions

Decision Making in an uncertain, dynamic world

Background reading

A Concise Introduction to Models and Methods for Automated Planning by 
Hector Geffner and Blai Bonet, Synthesis Lectures on AI and Machine Learning, 
Morgan Claypool 2013. Chapters 6 & 7
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Risk Attitudes

Which would you prefer?
A lottery ticket that pays out $10 with probability .5 and $0 otherwise, or
A lottery ticket that pays out $3 with probability 1

How about:
A lottery ticket that pays out $1,000,000 with probability .5 and $0
otherwise, or
A lottery ticket that pays out $300,000 with probability 1

Usually, people do not simply go by expected value

Agents are risk-neutral if they only care about the expected value

Agents are risk-averse if they prefer the expected value to the lottery ticket

Most people are like this

Agents are risk-seeking if they prefer the lottery ticket
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Decreasing Marginal Utility

Typically, at some point, having an extra dollar does not make people 
much happier (decreasing marginal utility)

utility

money$800 $15,000 $40,000

buy a bike (utility = 1)

buy a car (utility = 2)

buy a nicer car (utility = 3)
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Maximising Expected Utility

Lottery 1: get $15,000 with probability 1    expected utility = 2

Lottery 2: get $40,000 with probability 0.4, $800 otherwise
       expected utility = 0.4*3 + 0.6*1 = 1.8 < 2                                                                 
        expected amount of money = 0.4*$40,000 + 0.6*$800 = $16,480 > $15,000

So: maximising expected utility is consistent with risk aversion

utility

money$800 $15,000 $40,000

buy a bike (utility = 1)

buy a car (utility = 2)

buy a nicer car (utility = 3)
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Acting Optimally Over Time

finite number of rounds:

Overall utility = sum of rewards (or: utility) u(t) in individual periods t

infinite number of rounds:

(Limit of) average payoff: limn→∞∑1≤t≤nu(t)/n

may not exist…

Discounted payoff: Σt δ
tu(t) for some δ < 1

Interpretations of discounting:

Interest rate
World ends with some probability 1 – δ

Discounting is mathematically convenient
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Decision Making Under Uncertainty
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Markov 
process

HMM

MDP POMDP

full observability partial observability

no actions

actions

Overview

Markov process = state transition systems with probabilities

Markov process + actions = Markov decision process (MDP)

Markov process + partial observability = hidden Markov model (HMM)

Markov process + partial observability + actions = HMM + actions =
MDP with partial observability (POMDP)
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time periods t = 0, 1, 2, …

in each period t, the world is in a certain state St

Markov assumption – given St, St+1 is independent of all Si with i < t

P(St+1 | S1, S2, …, St) = P(St+1 | St)

Given the current state, history tells us nothing more about the future

Notation:  P(A | B)      the probability of A under the condition that B holds

S0 S1 S2
… St

…

Markov Processes

conditional probability
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s

c r

.1

.2

.6

.3
.4

.3

.3

.5
.3

Weather Example

St is one of {s, c, r} (sun, cloudy, rain)

Conditional transition probabilities:

Also need to specify an initial distribution P(S0)

Throughout, we assume that P(S0 = s) = 1
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Fundamental Probability Laws

Law of total probability: P(A) = P(A,B1) + P(A,B2) + P(A,B3),                          

                                       if B1,B2,B3 cover all possibilities

Axiom of probability: P(A,B) = P(A | B) * P(B)

P(St+1 = r) = P(St+1 = r, St = r) + P(St+1 = r, St = s) + P(St+1 = r, St = c)

P(St+1 = r) = P(St+1 = r | St = r) * P(St = r) +                                                                 

                      P(St+1 = r | St = s) * P(St = s) +                                                               

                      P(St+1 = r | St = c) * P(St = c)

law of total probability

axiom of probability
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Weather Example (cont'd)

What is the probability that it rains two days from now? 
P(S2 = r) = P(S2 = r, S1 = r) + P(S2 = r, S1 = s) + P(S2 = r, S1 = c)

               = 0.1*0.3 + 0.6*0.1 + 0.3*0.3 = 0.18

What is the probability that it rains three days from now? 
P(S3 = r) = P(S3 = r | S2 = r)P(S2 = r) + P(S3 = r | S2 = s)P(S2 = s)     

                                                           + P(S3 = r | S2 = c)P(S2 = c)

Main idea: compute distribution P(S1), then P(S2), then P(S3), ...

since P(S0=s)=1

P(S0=s)=1
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We can derive some reward from the weather each day:

How much utility can we expect in the long run?

depends on the discount factor δ and the initial state

Let v(s) be the (long-term) expected utility from being in state S now and 
P(S,S') the transition probability from S to S'

Must satisfy (∀S) v(S) = u(S) + δ∑S’ P(S,S') v(S')

Example. v(c) = 8 + δ(0.4v(s) + 0.3v(c) + 0.3v(r))

solve system of linear equations to obtain values for all states

10

18

Adding Rewards to a Markov Process
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Iteratively Updating Values

If system of equations too had to solve because there are too many states 
you can iteratively update values until convergence

vi(S) is value estimate after i iterations

vi(S) = u(S) + δ∑S' P(S,S') vi-1(S')

Will converge to right values

If we initialize v0=0 everywhere, then vi(S) is expected utility with only i 
steps left (finite horizon)
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Example

Let  δ = .5

v0(s) = v0(c) = v0(r) = 0

v1(s) = 10 + 0.5 * (0.6*0 + 0.3*0 + 0.1*0) = 10                                         
v1(c) = 8 + 0.5 * (0.4*0 + 0.3*0 + 0.3*0) = 8                                             
v1(r) = 1 + 0.5 * (0.2*0 + 0.5*0 + 0.3*0) = 1                                              
    

v2(s) = 10 + 0.5 * (0.6*10 + 0.3*8 + 0.1*1) = 14.25                           
v2(c) = 8 + 0.5 * (0.4*10 + 0.3*8 + 0.3*1) = 11.35                                    
v2(r) = 1 + 0.5 * (0.2*10 + 0.5*8 + 0.3*1) = 4.15

...

10

8 1
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Markov Decision Processes
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Markov 
process

HMM

MDP POMDP

full observability partial observability

no actions

actions

Overview

Markov process = state transition systems with probabilities

Markov process + actions = Markov decision process (MDP)

Markov process + partial observability = hidden Markov model (HMM)

Markov process + partial observability + actions = HMM + actions =
MDP with partial observability (POMDP)
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Markov Decision Process

MDP is like a Markov process, except every round we make a decision

Transition probabilities depend on actions taken

P(St+1 = S' | St = s, At = a) = P(S, a, S')

Rewards for every state, action pair

u(St = s, At = a)

Discount factor δ

Example.

A machine can be in one                                                                              
of three states:                                                                                           
good, deteriorating, broken

Can take two actions:                                                                            
maintain, ignore
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Policies

A policy is a function π from states to actions

Example

π(good shape) = ignore, π(deteriorating) = ignore, π(broken) = maintain

Evaluating a policy

Key observation: MDP + policy = Markov process with rewards

Already know how to evaluate Markov process with rewards:             
system of linear equations

Algorithm for finding optimal policy:    
try every possible policy and evaluate

terribly inefficient ...
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Value Iteration for Finding Optimal Policy

Suppose you are in state s, and you act optimally from there on

This leads to expected value v*(s)
Bellman equation:  v*(s) = maxa u(s, a) + δ∑s' P(s, a, s') v*(s')

Value Iteration Algorithm

Iteratively update values for states using Bellman equation
vi(s) is our estimate of value of state s after i updates

vi+1(s) = maxa u(s, a) + δ∑s' P(s, a, s') vi(s')

If we initialize v0=0 everywhere, then vi(s) is optimal expected utility with 
only i steps left (finite horizon)

          Optimal Policy

π(s) = arg maxa u(s, a) + δ∑s' P(s, a, s') v*(s')

take the best action
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Exercise



COMP4418, 22 September 2015 22Decision Making

COMP4418 15s2
© Michael Thielscher 2015

The Monty Hall Domain
A car prize is hidden behind one of three 
closed doors, goats are behind the other two

The candidate chooses one door

Monty Hall (the host) opens one of the other 
two doors to reveal a goat

The candidate can stick to their initial choice, 
or switch to the other door that's still closed

Represent Monty Hall as a Markov Process with actions

State representation: (chosen, car, open) – e.g., (3, 2, 1)

  Step 1: You choose a door. Simultaneously, car is randomly placed.

  Step 2: You can only do noop. Simultaneously, one door is opened.

  Step 3: You can choose between noop and switch.
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Markov Processes With Partial Observability
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Markov 
process

HMM

MDP POMDP

full observability partial observability

no actions

actions

Overview

Markov process = state transition systems with probabilities

Markov process + actions = Markov decision process (MDP)

Markov process + partial observability = hidden Markov model (HMM)

Markov process + partial observability + actions = HMM + actions =
MDP with partial observability (POMDP)
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Hidden Markov Models

Hidden Markov Model (HMM) = Markov process, but agent can't see state

Instead, agent sees an observation each period, which depends on the 
current state

Transition model as before:  P(St+1 = j | St = i) = pij

plus observation model:  P(Ot = k | St = i) = qik

S0 S1 S2
… St

…

O0 O1 O2 Ot
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HMM: Weather Example Revisited

Observations: your labmate wet or dry

qsw = 0.1, qcw = 0.3, qrw = 0.8 

Example

You have been stuck in the lab for three days (!)
On those days, your labmate was dry, then wet, then wet again
What is the probability that it is now raining outside?

P(S2 = r | O0=d, O1=w, O2=w)

Computationally efficient approach: first compute P(S1 = i | O0=d, O1=w) 
    for all states i (this is called "monitoring")

conditional probabilities
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HMM: Predicting Further Out

On the last three days, your labmate was dry, wet, wet, respectively

What is the probability that two days from now it will be raining outside?  

P(S4 = r | O0=d, O1=w, O2=w)

Already know how to use monitoring to compute  P(S2 | O0=d, O1=w, O2=w)

P(S3=r | O0=d, O1=w, O2=w) = ∑sP(S3=r | S2=S)P(S2=S | O0=d, O1=w, O2=w)

Likewise for S4

So: monitoring first, then straightforward Markov process updates
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Decision Making Under Partial Observability:
POMDPs
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Markov 
process

HMM

MDP POMDP

full observability partial observability

no actions

actions

Overview

Markov process = state transition systems with probabilities

Markov process + actions = Markov decision process (MDP)

Markov process + partial observability = hidden Markov model (HMM)

Markov process + partial observability + actions = HMM + actions =
MDP with partial observability (POMDP)
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Markov Decision Processes
under Partial Observability

POMDP = HMM + actions

   Example

Observations

Does machine fail on a single job?

P(fail | good shape) = 0.1                                                     
P(fail | deteriorating) = 0.2                                                       
P(fail | broken) = 0.9

In general, probabilities can also depend on action taken
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Optimal Policies in POMDPs

Cannot simply use π(s) because we do not know s

We can maintain a probability distribution over s using filtering:

P(St | A0= a0, O0= o0, …, At-1= at-1, Ot-1 = ot-1)

This gives a belief state b where b(s) is our current probability for s

Key observation: policy only needs to depend on b, π(b)

If we think of the belief state as the state, then the state is observable 
and we have an MDP

But: more difficult due to large, continuous state space
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Exercise
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Monty Hall as POMDP

Represent Monty Hall as a Hidden Markov Model with actions

States representation: (chosen, car, open) – e.g., (3, 2, 1)

  Step 1: You choose a door. Simultaneously, car is randomly placed (unobserved)

  Step 2: You can only do noop. Simultaneously, one door is opened (observed)

  Step 3: You can choose between noop and switch

What's the optimal policy?
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Summary

Decision Theory

Utility functions, discount

Single-agent decision making

Representation: Markov Models & Hidden Markov Models

Reasoning: MDPs & POMDPs
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