Overview: Representation Techniques

Week 6

- Representations for classical planning problems
 - deterministic environment; complete information

Week 7

- Logic programs for problem representations
 - including planning problems, games

Week 8

- First-order logic to describe dynamic environments
 - deterministic environment; (in-)complete information

Week 9

- State transition systems to describe dynamic environments
 - nondeterministic environment; (in-)complete information

Decision Making

- Background: utility functions
- Decision Making in an uncertain, dynamic world

Background reading

A Concise Introduction to Models and Methods for Automated Planning by Hector Geffner and Blai Bonet, Synthesis Lectures on Al and Machine Learning, Morgan Claypool 2013. Chapters 6 & 7

Risk Attitudes

Which would you prefer?

- A lottery ticket that pays out \$10 with probability .5 and \$0 otherwise, or
- A lottery ticket that pays out \$3 with probability 1

How about:

- A lottery ticket that pays out \$1,000,000 with probability .5 and \$0 otherwise, or
- A lottery ticket that pays out \$300,000 with probability 1
- Usually, people do not simply go by expected value
- Agents are risk-neutral if they only care about the expected value
- Agents are risk-averse if they prefer the expected value to the lottery ticket
 - Most people are like this
- Agents are risk-seeking if they prefer the lottery ticket

Decreasing Marginal Utility

 Typically, at some point, having an extra dollar does not make people much happier (decreasing marginal utility)

Maximising Expected Utility

- Lottery 1: get \$15,000 with probability 1 ⇒ expected utility = 2
- Lottery 2: get \$40,000 with probability 0.4, \$800 otherwise
 - \Rightarrow expected utility = 0.4*3 + 0.6*1 = 1.8 < 2
 - \Rightarrow expected amount of money = 0.4*\$40,000 + 0.6*\$800 = \$16,480 > \$15,000
- So: maximising expected utility is consistent with risk aversion

Acting Optimally Over Time

- finite number of rounds:
 - Overall utility = sum of rewards (or: utility) u(t) in individual periods t
- infinite number of rounds:
 - (Limit of) average payoff: $\lim_{n\to\infty}\sum_{1\leq t\leq n}u(t)/n$
 - may not exist...
 - Discounted payoff: $\Sigma_t \delta^t u(t)$ for some $\delta < 1$
 - Interpretations of discounting:
 - Interest rate
 - World ends with some probability 1 δ
 - Discounting is mathematically convenient

Decision Making Under Uncertainty

Overview

- Markov process = state transition systems with probabilities
- Markov process + actions = Markov decision process (MDP)

- Markov process + partial observability = hidden Markov model (HMM)
- Markov process + partial observability + actions = HMM + actions = MDP with partial observability (POMDP)

	full observability	partial observability
no actions	Markov process	HMM
actions	MDP	POMDP

Markov Processes

- time periods t = 0, 1, 2, ...
- in each period t, the world is in a certain state S_t
- Markov assumption given S_t, S_{t+1} is independent of all S_i with i < t
 - $P(S_{t+1} | S_1, S_2, ..., S_t) = P(S_{t+1} | S_t)$
 - Given the current state, history tells us nothing more about the future

Notation: P(A | B) the probability of A under the condition that B holds

Weather Example

- S_t is one of {s, c, r} (sun, cloudy, rain)
- Conditional transition probabilities:

- Also need to specify an initial distribution P(S₀)
 - Throughout, we assume that $P(S_0 = s) = 1$

Fundamental Probability Laws

- Law of total probability: P(A) = P(A,B₁) + P(A,B₂) + P(A,B₃),
 if B₁,B₂,B₃ cover all possibilities
- Axiom of probability: P(A,B) = P(A | B) * P(B)

law of total probability

•
$$P(S_{t+1} = r) = P(S_{t+1} = r, S_t = r) + P(S_{t+1} = r, S_t = s) + P(S_{t+1} = r, S_t = c)$$

•
$$P(S_{t+1} = r) = P(S_{t+1} = r \mid S_t = r) * P(S_t = r) + P(S_{t+1} = r \mid S_t = s) * P(S_t = s) + P(S_{t+1} = r \mid S_t = c) * P(S_t = c)$$

axiom of probability

Weather Example (cont'd)

What is the probability that it rains two days from now?

•
$$P(S_2 = r) = P(S_2 = r, S_1 = r) + P(S_2 = r, S_1 = s) + P(S_2 = r, S_1 = c)$$

= $0.1*0.3 + 0.6*0.1 + 0.3*0.3 = 0.18$

since $P(S_0=s)=1$

What is the probability that it rains three days from now?

•
$$P(S_3 = r) = P(S_3 = r | S_2 = r)P(S_2 = r) + P(S_3 = r | S_2 = s)P(S_2 = s) + P(S_3 = r | S_2 = c)P(S_2 = c)$$

 \Rightarrow Main idea: compute distribution $P(S_1)$, then $P(S_2)$, then $P(S_3)$, ...

13

Adding Rewards to a Markov Process

• We can derive some reward from the weather each day:

- How much utility can we expect in the long run?
 - depends on the discount factor δ and the initial state
- Let v(s) be the (long-term) expected utility from being in state S now and P(S,S') the transition probability from S to S'
- Must satisfy $(\forall S) v(S) = u(S) + \delta \sum_{S'} P(S,S') v(S')$
 - Example. $v(c) = 8 + \delta(0.4v(s) + 0.3v(c) + 0.3v(r))$
 - ⇒ solve system of linear equations to obtain values for all states

Iteratively Updating Values

- If system of equations too had to solve because there are too many states you can iteratively update values until convergence
 - v_i(S) is value estimate after i iterations
 - $v_i(S) = u(S) + \delta \sum_{S'} P(S,S') v_{i-1}(S')$
- Will converge to right values
- If we initialize v₀=0 everywhere, then v_i(S) is expected utility with only is steps left (finite horizon)

Example

- Let $\delta = .5$
 - $v_0(s) = v_0(c) = v_0(r) = 0$
 - $v_1(s) = 10 + 0.5 * (0.6*0 + 0.3*0 + 0.1*0) = 10$ $v_1(c) = 8 + 0.5 * (0.4*0 + 0.3*0 + 0.3*0) = 8$ $v_1(r) = 1 + 0.5 * (0.2*0 + 0.5*0 + 0.3*0) = 1$
 - $v_2(s) = 10 + 0.5 * (0.6*10 + 0.3*8 + 0.1*1) = 14.25$ $v_2(c) = 8 + 0.5 * (0.4*10 + 0.3*8 + 0.3*1) = 11.35$ $v_2(r) = 1 + 0.5 * (0.2*10 + 0.5*8 + 0.3*1) = 4.15$

Markov Decision Processes

Overview

- Markov process = state transition systems with probabilities
- Markov process + actions = Markov decision process (MDP)

- Markov process + partial observability = hidden Markov model (HMM)
- Markov process + partial observability + actions = HMM + actions = MDP with partial observability (POMDP)

	tuli observability	partial observability
no actions	Markov process	HMM
actions	MDP	POMDP

Markov Decision Process

- MDP is like a Markov process, except every round we make a decision
- Transition probabilities depend on actions taken

•
$$P(S_{t+1} = S' | S_t = s, A_t = a) = P(S, a, S')$$

- Rewards for every state, action pair
 - $u(S_t = s, A_t = a)$
- Discount factor δ

Example.

- A machine can be in one of three states: good, deteriorating, broken
- Can take two actions: maintain, ignore

Policies

• A policy is a function π from states to actions

Example

• π (good shape) = ignore, π (deteriorating) = ignore, π (broken) = maintain

Evaluating a policy

- Key observation: MDP + policy = Markov process with rewards
- Already know how to evaluate Markov process with rewards: system of linear equations
- Algorithm for finding optimal policy: try every possible policy and evaluate
 - terribly inefficient ...

Value Iteration for Finding Optimal Policy

- Suppose you are in state s, and you act optimally from there on
- This leads to expected value v*(s)
- Bellman equation: $v^*(s) = \max_a u(s, a) + \delta \sum_{s'} P(s, a, s') v^*(s')$

⇒ Value Iteration Algorithm

- Iteratively update values for states using Bellman equation
- v_i(s) is our estimate of value of state s after i updates
 - $v_{i+1}(s) = \max_a u(s, a) + \delta \sum_{s'} P(s, a, s') v_i(s')$
- If we initialize $v_0=0$ everywhere, then $v_i(s)$ is optimal expected utility with only i steps left (finite horizon)

• $\pi(s) = \arg \max_{a} u(s, a) + \delta \sum_{s'} P(s, a, s') v^*(s')$

take the best action

Exercise

The Monty Hall Domain

- A car prize is hidden behind one of three closed doors, goats are behind the other two
- The candidate chooses one door
- Monty Hall (the host) opens one of the other two doors to reveal a goat

 The candidate can stick to their initial choice, or switch to the other door that's still closed

Represent Monty Hall as a Markov Process with actions

State representation: (chosen, car, open) – e.g., (3, 2, 1)

Step 1: You choose a door. Simultaneously, car is randomly placed.

Step 2: You can only do noop. Simultaneously, one door is opened.

Step 3: You can choose between noop and switch.

Markov Processes With Partial Observability

Overview

- Markov process = state transition systems with probabilities
- Markov process + actions = Markov decision process (MDP)

- Markov process + partial observability = hidden Markov model (HMM)
- Markov process + partial observability + actions = HMM + actions = MDP with partial observability (POMDP)

	full observability	partial observability
no actions	Markov process	HMM
actions	MDP	POMDP

Hidden Markov Models

- Hidden Markov Model (HMM) = Markov process, but agent can't see state
- Instead, agent sees an observation each period, which depends on the current state

- Transition model as before: P(S_{t+1} = j | S_t = i) = p_{ii}
- plus observation model: P(O_t = k | S_t = i) = q_{ik}

HMM: Weather Example Revisited

- Observations: your labmate wet or dry
 - $q_{sw} = 0.1, q_{cw} = 0.3, q_{rw} = 0.8$

conditional probabilities

Example

- You have been stuck in the lab for three days (!)
- On those days, your labmate was dry, then wet, then wet again
- What is the probability that it is now raining outside?
 - $P(S_2 = r \mid O_0 = d, O_1 = w, O_2 = w)$
 - \Rightarrow Computationally efficient approach: first compute P(S₁ = i | O₀=d, O₁=w) for all states i (this is called "monitoring")

HMM: Predicting Further Out

- On the last three days, your labmate was dry, wet, wet, respectively
- What is the probability that two days from now it will be raining outside?
 - $P(S_4 = r \mid O_0 = d, O_1 = w, O_2 = w)$
- Already know how to use monitoring to compute P(S₂ | O₀=d, O₁=w, O₂=w)
- $P(S_3=r \mid O_0=d, O_1=w, O_2=w) = \sum_{S} P(S_3=r \mid S_2=S) P(S_2=S \mid O_0=d, O_1=w, O_2=w)$
- Likewise for S4
 - ⇒ So: monitoring first, then straightforward Markov process updates

Decision Making Under Partial Observability: POMDPs

Overview

- Markov process = state transition systems with probabilities
- Markov process + actions = Markov decision process (MDP)

- Markov process + partial observability = hidden Markov model (HMM)
- Markov process + partial observability + actions = HMM + actions = MDP with partial observability (POMDP)

	full observability	partial observability
o actions	Markov process	HMM
actions	MDP	POMDP

n

Markov Decision Processes under Partial Observability

POMDP = HMM + actions

Example

- Observations
 - Does machine fail on a single job?
 - P(fail | good shape) = 0.1
 P(fail | deteriorating) = 0.2
 P(fail | broken) = 0.9
- In general, probabilities can also depend on action taken

Optimal Policies in POMDPs

- Cannot simply use π(s) because we do not know s
- We can maintain a probability distribution over s using filtering:
 - $P(S_t | A_0 = a_0, O_0 = o_0, ..., A_{t-1} = a_{t-1}, O_{t-1} = o_{t-1})$
- This gives a belief state b where b(s) is our current probability for s
- Key observation: policy only needs to depend on b, $\pi(b)$
- If we think of the belief state as the state, then the state is observable and we have an MDP
- But: more difficult due to large, continuous state space

Exercise

Monty Hall as POMDP

Represent Monty Hall as a Hidden Markov Model with actions

States representation: (chosen, car, open) – e.g., (3, 2, 1)

Step 1: You choose a door. Simultaneously, car is randomly placed (unobserved)

Step 2: You can only do noop. Simultaneously, one door is opened (observed)

Step 3: You can choose between noop and switch

What's the optimal policy?

Summary

Decision Theory

Utility functions, discount

Single-agent decision making

- Representation: Markov Models & Hidden Markov Models
- Reasoning: MDPs & POMDPs