GSOE9210 Engineering Decisions

Victor Jauregui

vicj@cse.unsw.edu.au
www.cse.unsw.edu.au/~gs9210

Victor Jauregui

Engineering Decisions

Mixed strategies

What are mixed strategies?

2 Calculations with mixtures

3 Mixing many strategies

 Original values: fuel saved; Regret: extra fuel used В

1

2

f

0

0

Mixed strategies

Example (Multi-decision strategies)

Suppose four packages have to be delivered urgently to C today. Each package is transported on a separate motor-boat.

Victor Jauregui Engineering Decisions

Strategy AAAB: three trips via A and one via B;
 One extra litre used if f (due to 1 × B) and three if f (3 × A)

What	are	mixed	strategies?

Mixed strategies

Average over many trips (*i.e.*, per trip):

Definition (Mixed strategy)

A *mixed strategy* (or *mixture*) is a strategy in which the basic strategies are distributed proportionately. A strategy in which the entire proportion is from one basic strategy is called a *pure strategy*.

Mixed strategies

- Mixtures of A and B lie on line segment AB
- Positioning of mixture M determined by mixture parameter μ_A $(0 \leq \mu_A \leq 1)$
- *i.e.*, if $M = M(\mu_A)$ then M is μ_A of the way from B to A; e.g., $\frac{3}{4}A\frac{1}{4}B = M(\frac{3}{4})$

Victor Jauregui Engineering Decisions

What are mixed strategies?

Mixed strategies

In general:

- If $\mathcal{A} = \{a_1, \ldots, a_k\}$, then the mixed strategies are determined by the mixtures $(\mu_{a_1}, \ldots, \mu_{a_k})$ associated with the basic strategies
- The value of mixed strategy $M(\mu_{a_1}, \ldots, \mu_{a_k})$ in state $s \in S$ is the average value of the basic strategies:

$$V(M,s) = \mu_{a_1}v(a_1,s) + \dots + \mu_{a_k}v(a_k,s)$$
$$= \sum_{a \in \mathcal{A}} \mu_a v(a,s).$$

where

$$\sum_{a \in \mathcal{A}} \mu_a = 1$$

• Think of a mixture as many independent decisions in a single unknown state

River example

- Axes correspond to payoffs in each of the two states; *i.e.*, payoff v_1 in state $s_1 = f$ and v_2 in $s_2 = \overline{f}$
- Actions graphed below:

- Option C not a better response than B under any circumstances (*i.e.*, in any state)
- C worse than B in some cases and no better in all others; C can be *discarded*

Victor Jauregui Engineering Decisions

Mixed strategies: mixture plots

For the river problem with $\mu_A = \mu$:

$$m_1 = 4\mu + 3(1 - \mu) = 3 + \mu$$

$$m_2 = 0\mu + 1(1 - \mu) = 1 - \mu$$

Exercise

Which is the *Maximin* mixed strategy?

Mixed strategies: many states

Consider a problem with four states, two basic strategies, and mixtures, M, where $\mu_A = \mu$:

 $\begin{array}{l} \textit{Maximin} \text{ values for mixed strategies} \\ M(\mu) \text{ lie on solid line.} \\ \textit{Maximin} \text{ mixed strategy } M^* \text{ given by} \\ \mu^* = \frac{1}{2} \text{ which maximises } \textit{Maximin} \\ \textit{values; i.e., } V_{Mm}(M^*) = \frac{1}{2}. \end{array}$

Victor Jauregui

Calculations with mixtures

Engineering Decisions

Outline

What are mixed strategies?

2 Calculations with mixtures

3 Mixing many strategies

Mixed strategies: Maximin

- Mixtures defined by mixture parameter μ ($0 \le \mu \le 1$): $M(\mu) = (2\mu + 1, 2 - 2\mu)$; i.e., $m_1 = 2\mu + 1$, $m_2 = 2 - 2\mu$
- Point M^* corresponds to mixture $M(\frac{1}{4}) = \frac{1}{4}A\frac{3}{4}B$

Exercise

Derive a general expression for a mixture $M(\mu)$ of two actions A and B.

Victor Jauregui Engineering Decisions

Calculations with mixtures

Mixed strategies: mixture plot

Consider mixtures M, where $\mu_A = \mu$:

 μ

- Maximin values for mixed strategies $M(\mu)$ lie on solid line
- Maximin mixed strategy M^* is mixture that maximises Maximin value
- Maximin value maximised for $\mu^* = \frac{1}{4}$; *i.e.*, $V_{Mm}(M^*) = \frac{3}{2}$

Exercises

Verify algebraically the value of μ^* above.

Mixed strategies: Maximin

- Mixtures defined by *mixture parameter* μ ($0 \le \mu \le 1$): $M(\mu) = (2\mu + 1, 2 - 2\mu)$; *i.e.*, $m_1 = 2\mu + 1$, $m_2 = 2 - 2\mu$
- Point M^* corresponds to mixture $M(\frac{1}{4}) = \frac{1}{4}A\frac{3}{4}B$

Exercise

Derive a general expression for a mixture $M(\mu)$ of two actions A and B.

Victor Jauregui Engineering Decisions

Calculations with mixtures

Mixed strategies: many states

Consider a problem with four states, two basic strategies, and mixtures, M, where $\mu_A = \mu$:

Maximin values for mixed strategies $M(\mu)$ lie on solid line. Maximin mixed strategy M^* given by $\mu^* = \frac{1}{2}$ which maximises Maximin values; *i.e.*, $V_{Mm}(M^*) = \frac{1}{2}$.

Exercise

Which is the *Maximin* mixed strategy? What is its value?

Exercise

Which is the *Maximin* mixed strategy? What is its value?

 s_2

5

4

3

 $\mathbf{2}$

1

0

0

2

1

3

5

Mixed strategies: miniMax Regret

Consider the regret for the decision problem below:

Note: miniMax Regret mixedaction R' doesn't correspond to Maximin mixed action M.

Exercise

Determine the miniMax Regret mixed strategy. What is its value?

- miniMax Regret mixed strategy M* is mixture that minimises miniMax Regret value
- miniMax Regret value maximised for $\mu^* = \frac{1}{4}$; i.e., $V_{mMR}(M^*) = \frac{3}{4}$

Exercises

Verify algebraically the value of μ^* above.

Generalised dominance

Definition (Strict dominance)

Strategy A *strictly dominates* B iff every outcome of A is more preferred than the corresponding outcome of B.

Definition (Weak dominance)

Strategy A *weakly dominates* B iff every outcome of A is no less preferred than the corresponding outcome of B, and some outcome is more preferred.

Victor Jauregui

Mixing many strategies

gui Engineering Decisions

Mixed strategies: dominance

- No pure strategies dominated by other pure strategies
- However, C is dominated by all mixed strategies on A'B'
- C isn't admissible among *mixed strategies*

Mixing many strategies

Summary: mixed strategies

- Mixed strategies as combinations of pure strategies
- Interpreting mixed strategies are repeated decisions about a single event
- Visualising and plotting mixtures: mixture plots
- Mixtures and dominance