
Getting Started 

Installing Atmel Studio 

Download the Atmel Studio 7 installer from this link 

http://www.atmel.com/tools/atmelstudio.aspx#download. 

Make sure you select the AVR 8-bit MCU option for the installation. 

 

Building and Debugging 

Once Atmel Studio has launched, select New Project on the Start Page. 

You will then be presented with the New Project window. Underneath the Installed tab, select the 

Assembler option, select AVR Assembler Project and name the project “lab00-1”. 

 

 

 

 

 

 

 

 

http://www.atmel.com/tools/atmelstudio.aspx%23download


Once you click OK on this screen, you will be taken to the device selection window. Either scroll or search 

for “ATmega2560”, select it and click OK. 

If the editor has not yet opened “main.asm”, then open that file. The contents of the file should be a 

simple assembly file scaffold similar to the below screenshot. 

Now replace the entire contents of this file with the following code snippet. 

Note: There is an issue with formatting of the double quotes 

in this code, so simply copying and pasting the code will cause 

an error. You should type it directly into the editor instead. 

The “.include” directive works in the same way as C’s 

“#include”. “m2560def.inc” contains port and register 

definitions for the ATmega2560 chip and should be included 

at the top of every assembler program. 

.include “m2560def.inc” 

 

start: 

 ldi r16, 8 

 ldi r17, 9 

 

halt: 

 rjmp halt 

 



Press Alt+F5 to start executing the program and to halt at the first instruction. If the below screen appears 

then select the Simulator as the Selected Debugger and then click on the “main.asm” tab to return to your 

source code. Press Alt+F5 again to begin simulating. 

 

 

 

 

 

 

Press Alt+F5 to start executing the program and to halt at the first instruction. The screen will change and 

some new windows will appear. If a window appears obstructing the view of your source code, you can 

drag and drop windows in order to rearrange them. 

 

Now you should go to Debug->Windows->Processor Status and drag the new window to the side. This 

window contains important views that will help you debug your assembly programs including the registers, 

status register and stack pointer. The yellow arrow denotes the instruction to be performed next. 

The screen will change and some new windows will appear. If a window appears obstructing the view of 

your source code, you can drag and drop windows in order to rearrange them. 

Now you should go to Debug->Windows->Processor Status and drag the new window to the side. This 
window contains important views that will help you debug your assembly programs including the registers, 
status register and stack pointer. The yellow arrow denotes the instruction to be performed next.  



You can now step through the program by individual instruction by pressing F10 (step over). Do this now. 

Focusing your attention on the processor status window, you can see all 32 registers and their current 

values are displayed. The instruction just performed was to load an immediate value of 8 into the 16th 

register (r16) and you can see the processor status indicates this has happened. Notice that the value is in 

red denoting that the value has changed from the previous step. Press F10 to step again. 

  



You have now reached the end of the program (continuing to press F10 will have no effect as the 

instruction jumps to itself effectively making an infinite loop). Note that R17 has changed and the value is 

highlighted red. Press the stop button to stop the simulator. 

Breakpoints and the Status Register 

Now clear the code again (or create a new project) and enter the following. 

 

 

 

Breakpoints allow us to specify instructions that we want the 

simulator to halt on so we can examine the system before the 

instruction gets called. We are going to put a breakpoint on the 

add instruction. Clicking on the grey bar on the left side of the 

code window will place a red dot denoting a breakpoint. 

.include “m2560def.inc” 

 

start: 

 ldi r16, 200 

 ldi r17, 100 

 add r16, r17 

 

halt: 

 rjmp halt 



Now press F5 alone (remember that pressing Alt+F5 will cause the simulator to break on the first 

instruction). The simulator will progress until it hits the breakpoint on the add instruction. 

 

 

 

 

 

 

 

 

 

 

 

 

Press F10 once again to execute the add instruction. 

 

 

 

 

 

 



This simple program has finished executing and we can see that the previous add instruction has triggered 

one of the status flags of the register. Scrolling down the processor status window will allow you to see the 

final values in the register. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As indicated by the raised carry flag, the stored value in R16 has become too large to fit in an 8-bit integer 

so rather than containing 300 as expected it contains 0x2C (44). 


