COMP2121 - Tutorial 2

- 1. Encode the following instructions into Atmel AVR machine code:
 - a) ldi r18, 127
 - b) mov r18, r2
 - c) lds r2, 0xABCD

Refer to the AVR Instruction Set document on the course website (in the AVR Material section).

- 2. How many bits are needed to address:
 - a) 16 32-bit general purpose registers?
 - b) a memory space of 65536 bytes (assume byte addressing)?
 - c) a memory space of 65536 32-bit words (assume byte addressing)?
- 3. What do the following letters in a typical status register stand for and how are they generated?
 - a) Z
 - b) C
 - c) V
 - d) N
 - e) S
- 4. What is the main difference between the memory models of Princeton (von Neumann) and Harvard architectures?

5.

Memory address	Data
0x00000100	0xAF
0x00000101	0x1B
0x00000102	0xC2
0x00000103	0×05

Based on the above, what is the 32-bit word stored at the memory address 0×00000100 in a:

- a) big-endian machine?
- b) little-endian machine?
- 6. Can you design an 8-bit instruction format that can allow 4 2-operand instructions for a machine with 8 registers?