GSOE9210 Engineering Decisions

Victor Jauregui

vicj@cse.unsw.edu.au
www.cse.unsw.edu.au/~gs9210

Victor Jauregui

Engineering Decisions

Risk attitudes

1 Utility

- Bets and odds
- Expected monetary value
- Risk attitudes

Utility	
Outline	
<section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header>	Engineering Decisions
Victor Jauregu	
Utility	Bets and odds
Introduction	

- You have \$1000. Would you risk it to play 'double or nothing' on the toss of a fair coin? *i.e.*, to win \$2000 on heads, and \$0 on tails?
- Measured in dollars, $v_{\$}(\$x) = x$, the two have equal *Bayes* value; *i.e.*, $v_{\$}(\$1000) = 1000 = V_B([\frac{1}{2}:\$2000|\frac{1}{2}:\$0])$
- most people prefer a certain \$1000 over an even chance at \$2000 or \$0; *i.e.*, prefer \$1000 to $[\frac{1}{2}: $2000|\frac{1}{2}: $0]$
- what value function, u, on monetary outcomes would satisfy:

$$V_B([\$1000]) = u(\$1000) > V_B([\frac{1}{2}:\$2000|\frac{1}{2}:\$0])$$

Money bets and odds

Example (Betting)

Alice has 4 to bet on the toss of a fair coin to win 10 on heads.

Utility

Expected monetary value

Should Alice gamble?

$$\begin{split} \ell_{\overline{\mathsf{G}}} &= [\$4] \\ \ell_{\mathsf{G}} &= [\frac{1}{2}:\$10|\frac{1}{2}:\$0] \end{split}$$

Definition (Expected monetary value)

The expected monetary value (EMV) of a lottery, denoted $V_{\$}$, is the Bayes value of the lottery when outcomes are valued in \$ (*i.e.*, $v = v_{\$}$).

$$V_{\$}(\ell_{\overline{\mathsf{G}}}) = 4$$

$$V_{\$}(\ell_{\mathsf{G}}) = \frac{1}{2}v_{\$}(h) + \frac{1}{2}v_{\$}(t)$$

$$= \frac{1}{2}(10) + \frac{1}{2}(0)$$

$$= 5$$

Victor Jauregui

Engineering Decisions

Utility Expected monetary value

Expected monetary value

Definition (Fair bet)

A two-way gamble is represented by a binary lottery. A bet is *fair* for an agent if its expected monetary value for the corresponding lottery is no less than the value of not gambling; *i.e.*,

 $V_{\$}(\ell_{\mathsf{G}}) = E(v_{\$}) \ge V_{\$}(\ell_{\overline{\mathsf{G}}})$

The bet Alice was offered was fair—indeed 'favourable'—for Alice;
 i.e., V_{\$}(ℓ_G) > V_{\$}(ℓ_G)

Bets, stakes, and odds

Example (The races)

Alice is at the races and she's offered *odds* of '13 to 2' (13:2) on a horse by a bookmaker; *i.e.*, for every \$2 she puts in (her *stake*), the bookmaker puts in \$13, and the winner takes the entire *pool* (\$15 = \$13 + \$2).

Should Alice gamble? *i.e.*, is the bet favourable for Alice?

Definition (Favourable bet)

A bet is *favourable* to an agent if the value of the corresponding lottery for the agent is greater than that of not gambling. It is *unfavourable* if it is neither fair nor favourable.

Theorem (Fair bets)

Let a be agent A's stake and b be B's stake in a bet in which p is A's probability of winning. The bet is fair iff:

$$\frac{a}{b} = \frac{p}{1-p}$$

Bets: belief

- Suppose Alice believes that her horse has a 20% chance of winning.
- Then:

$$V_{\$}(\ell_{\mathsf{G}}) = \frac{1}{5}(15) + \frac{4}{5}(0) = \$3$$
$$V_{\$}(\ell_{\overline{\mathsf{G}}}) = \$2.$$

• Hence bet is favourable according to Alice based on her *beliefs* about her chance of winning.

Exercises Prove the theorem on fair bets. For what probabilities of winning should Alice bet on her horse? Victor Jauregui Engineering Decisions Utility Expected monetary value Working example

Example

A bookmaker (B) offers Alice (A) odds '4 to 1' (4:1) on her team—a strong underdog—to win a football match. Alice has \$10 to bet on her team.

- The 'bookie' *puts up* \$4 for every \$1 Alice bets, so the bookie has to put \$40 into the pool to match Alice's \$10
- Alice's outcomes: balance of \$50 or \$0, depending on whether her team wins or loses
- a bet is *fair overall* if it is not unfavourable to both parties involved; *i.e.*, if both parties expect to get back what they put in

Fair bets

The decision tree for the two-way bet:

Fair odds (in \$):

$$p_A(50) + (1 - p_A)(0) \ge 10$$

i.e. $p_A \ge \frac{10}{40 + 10} = \frac{1}{5}$

In general, a bet is fair for A if:

$$p_A \geqslant \frac{x_A}{x_A + x_B}$$

where G means Alice's agrees to gamble, and p_A is the probability that Alice wins $(p_A + p_B = 1)$

where

 x_A is A's stake (\$10) x_B is B's stake (\$40).

Victor Jauregui

Utility

Engineering Decisions

Expected monetary value

Utility of bets

- Bet would be fair if Alice *believes* chances of her team winning exceed 1 in 5 . . . Suppose Alice needs \$10 to buy dinner; should Alice gamble?
- Suppose Alice's preferences are: I'll gamble (risk going hungry) only if I believe my team's chances are at least even (*i.e.*, greater than 1 in 2)
- That is, Alice indifferent between certain \$10 and $\left[\frac{1}{2}: \$50 | \frac{1}{2}: \$0\right]$:

$$u(\$10) = U([\frac{1}{2}:\$50|\frac{1}{2}:\$0]) = E(u)$$

= $V_B([\frac{1}{2}:\$50|\frac{1}{2}:\$0])$ using u rather than $v_\$$
= $\frac{1}{2}u(\$50) + \frac{1}{2}u(\$0)$

• What does *u* look like?

Utility for money

$$U([p:\$50|(1-p):\$0]) = p$$

Victor Jauregui

Engineering Decisions

Utility Expected monetary value Utility for money On Alice's utility scale the umonetary outcomes are arranged as follows: $\frac{9}{10}$ u $\frac{1}{2}$ 1 $\frac{1}{5}$ 0 \$10 \$0 \$3 \$25 \$50 \$ Question What properties do typical utility Utility values should increase functions for money have? with increasing money

Functions on ordered sets

Definition (Monotonic increasing function)

A real-valued function $f : \mathbb{R} \to \mathbb{R}$ is monotonically increasing, or non-decreasing, iff for any $x, y \in \mathbb{R}$, if $x \ge y$, then $f(x) \ge f(y)$.

Examples: the following are non-decreasing functions on \mathbb{R} : $f(x) = \frac{1}{10}x$, f(x) = x, f(x) = c, for any fixed $c \in \mathbb{R}$

Exercise

Does this imply the converse; *i.e.*, if $f(x) \ge f(y)$, then $x \ge y$?

Victor Jauregui Engineerir

Engineering Decisions

Utility for money

Definition (Certainty equivalent)

An agent's certainty equivalent for a lottery is the value x_c for which the agent would be indifferent between it and the lottery; *i.e.*, $u(x_c) = U(\ell)$.

Definition (Risk premium)

The risk premium of an agent for lottery ℓ is the difference between the EMV of the lottery and the certainty equivalent: $V_{\$}(\ell) - x_c$.

Victor Jauregui

Engineering Decisions

Utility Expected monetary value

Repeated trials

Example (Alice and Bob)

Alice and her twin, Bob, have \$10 each and they are offered, separately, 4 to 1 odds on a team in two different football matches (*e.g.*, home and away). They believe the team has a 2 in 5 chance of winning each match.

• Should Alice bet?

In terms of the individual outcomes of Alice and Bob:

$$\ell_{AB} = \left[\frac{9}{25} : (\$0, \$0) | \frac{6}{25} : (\$0, \$50) | \frac{6}{25} : (\$50, \$0) | \frac{4}{25} : (\$50, \$50) \right]$$

If Alice and Bob share the risk/gain then:

$$(\$x,\$y) \sim \$\left(\frac{x+y}{2}\right)$$
 i.e. $u_A(x,y) = u_A\left(\frac{x+y}{2}\right)$

So for Alice:

$$\ell_A = \begin{bmatrix} \frac{9}{25} : \$0|\frac{6}{25} : \$25|\frac{6}{25} : \$25|\frac{4}{25} : \$50] \\ = \begin{bmatrix} \frac{9}{25} : \$0|\frac{12}{25} : \$25|\frac{4}{25} : \$50] \end{bmatrix}$$

Repeated trials

Where does ℓ_A fit in the scheme of things?

 $\ell_A = \left[\frac{9}{25} : \$0|\frac{12}{25} : \$25|\frac{4}{25} : \$50\right]$

Victor Jauregui

Engineering Decisions

- The individual bets are favourable for both Alice and Bob
- Despite this neither Alice nor Bob would take their respective individual bets
- However, they should bet together over multiple bets/trials

Risk attitudes

Definition (Risk attitudes)

An agent is:

- *risk averse* iff its certainty equivalent is less than the lottery's expected value; *i.e.*, it values the lottery to be worth less than the expected value.
- *risk seeking (risk prone)* iff its certainty equivalent is greater than the lottery's expected value.
- *risk-neutral* otherwise.

Exercises

- What is Alice's certainty equivalent for the lottery with Bob?
- The risk premium in what range if the agent is: risk averse? risk seeking? risk neutral?

Victor Jauregui	Engineering Decisions	
Utility	Risk attitudes	
Risk attitudes		
More generally:		
Definition (Risk averse)		
An agent is <i>risk averse</i> if its utility function is concave down.		
Definition (Risk seeking)		
An agent is <i>risk seeking</i> if its utility function is concave up (convex).		
Definition (Risk neutral)		

An agent is *risk neutral* if its utility function both concave down and up; *i.e.*, linear.

Concave and convex functions

Definition (Concave and convex)

A function $f : \mathbb{R} \to \mathbb{R}$ is *concave down* in the interval [a, b] if for all $x, y \in [a, b]$, and all $\lambda \in [0, 1]$, $f(\lambda x + (1 - \lambda)y) \ge \lambda f(x) + (1 - \lambda)f(y)$, and *concave up* (or *convex*) if $f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y)$.

Utility Risk attitudes

Summary: Introduction to utility

- Not all quantities (*e.g.*, \$) accurately represent preference over outcomes
- Expected values on these quantities may not accurately represent preference
- Measure preference in terms of utility; agent must calibrate utilities against uncertain outcomes (lotteries)
- An agent's utility is personal/subjective; *i.e.*, particular to him. Different agents may have different utilities for the same 'outcome'
- Utility functions are non-decreasing; this means that over many trials *Bayes* utilities approach expected values
- The shape of an agent's utility curve/function determines its risk attitude