Exercise sheet 8 - Solutions
 COMP6741: Parameterized and Exact Computation

Serge Gaspers

Semester 2, 2017

Exercise 1. Recall that a k-coloring of a graph $G=(V, E)$ is a function $f: V \rightarrow\{1,2, \ldots, k\}$ assigning colors to V such that no two adjacent vertices receive the same color.

```
Coloring
    Input: Graph G, integer }
    Question: Does G have a }k\mathrm{ -coloring?
```

- Suppose A is an algorithm solving Coloring in $O(f(n))$ time, $n=|V|$, where f is non-decreasing. Design a $O^{*}(f(n))$ time algorithm B, which, for an input graph G, finds a coloring of G with a smallest number of colors.

Solution sketch.

1. First, compute the smallest number of colors needed to color G

- For $k=1$ to n, execute algorithm A for the instance (G, k), and stop when encountering the first Yesinstance.
(Alternatively, use binary search to find the smallest k for which (G, k) is a Yes-instance)

2. Now, compute an actual k-coloring using the following ideas

- Select two non-adjacent vertices u and v, and check whether G as a k-coloring where u and v receive distinct colors.
This can be done by adding an edge between u and v, and using algorithm A.
If there is such a k-coloring, add the edge $u v$, and continue with two other distinct vertices.
If not, then u and v must receive the same color, and we merge them into a single vertex, and continue by picking two new non-adjacent vertices
- A complete graph on ℓ vertices needs ℓ colors.

Exercise 2. Recall that a graph $G=(V, E)$ is bipartite if G has a 2-coloring. A matching in a graph $G=(V, E)$ is a set of edges $M \subseteq E$ such that no two edges of M have an end-point in common. The matching M in G is perfect if every vertex of G is contained in an edge of M.

```
#Bipartite Perfect Matchings
    Input: Bipartite graph G = (V,E)
    Output: The number of perfect matchings in G
```

1. Design an algorithm for \#Bipartite Perfect Matchings with running time $O^{*}\left(\left(\frac{n}{2}\right)!\right)$, where $n=|V|$.
2. Design a polynomial-space $O^{*}\left(2^{n / 2}\right)$-time inclusion-exclusion algorithm for \#Bipartite Perfect MatchINGS.

Solution sketch.

1. Let (X, Y) be a bipartition of V such that X and Y are independent sets If $|X| \neq|Y|$, then return 0 . Denote $X=\left\{x_{1}, \ldots, x_{n / 2}\right\}$ and $Y=\left\{y_{1}, \ldots, y_{n / 2}\right\}$. For each permutation $\pi=\left(y_{\pi(1)}, \ldots, y_{\pi(n / 2)}\right)$ of Y,

$$
\left\{x_{i} y_{\pi(i)}: 1 \leq i \leq n / 2\right\}
$$

is a perfect matching iff $x_{i} y_{\pi(i)} \in E$ for each $i \in\{1, \ldots, n / 2\}$.
2. U : contains each set of $n / 2$ edges $\left\{e_{1}, \ldots, e_{n / 2}\right\}$ such that $x_{i} \in e_{i}$. For each $v \in Y, A_{v}=\{S \in U: v \in \bigcup S\}$. The number of perfect matchings is

$$
\begin{aligned}
\left|\bigcap_{v \in Y} A_{v}\right| & =\sum_{S \subseteq Y}(-1)^{|S|}\left|\bigcap_{v \in S} \overline{A_{v}}\right| \\
& =\sum_{S \subseteq Y}(-1)^{|S|} \prod_{i=1}^{n / 2}\left|N\left(x_{i}\right) \backslash S\right|
\end{aligned}
$$

