Exercise sheet 8 – Solutions COMP6741: Parameterized and Exact Computation

Serge Gaspers

Semester 2, 2017

Exercise 1. Recall that a *k*-coloring of a graph G = (V, E) is a function $f : V \to \{1, 2, ..., k\}$ assigning colors to V such that no two adjacent vertices receive the same color.

Coloring	
Input:	Graph G , integer k
Question:	Does G have a k -coloring?

• Suppose A is an algorithm solving COLORING in O(f(n)) time, n = |V|, where f is non-decreasing. Design a $O^*(f(n))$ time algorithm B, which, for an input graph G, finds a coloring of G with a smallest number of colors.

Solution sketch.

- 1. First, compute the smallest number of colors needed to color G
 - For k = 1 to n, execute algorithm A for the instance (G, k), and stop when encountering the first Yesinstance.

(Alternatively, use binary search to find the smallest k for which (G, k) is a Yes-instance)

- 2. Now, compute an actual k-coloring using the following ideas
 - Select two non-adjacent vertices u and v, and check whether G as a k-coloring where u and v receive distinct colors.
 - This can be done by adding an edge between u and v, and using algorithm A.

If there is such a k-coloring, add the edge uv, and continue with two other distinct vertices.

If not, then u and v must receive the same color, and we merge them into a single vertex, and continue by picking two new non-adjacent vertices

• A complete graph on ℓ vertices needs ℓ colors.

Exercise 2. Recall that a graph G = (V, E) is *bipartite* if G has a 2-coloring. A matching in a graph G = (V, E) is a set of edges $M \subseteq E$ such that no two edges of M have an end-point in common. The matching M in G is *perfect* if every vertex of G is contained in an edge of M.

#BIPARTITE PERFECT MATCHINGS Input: Bipartite graph G = (V, E)Output: The number of perfect matchings in G

- 1. Design an algorithm for #BIPARTITE PERFECT MATCHINGS with running time $O^*\left(\left(\frac{n}{2}\right)!\right)$, where n = |V|.
- 2. Design a polynomial-space $O^*(2^{n/2})$ -time inclusion-exclusion algorithm for #BIPARTITE PERFECT MATCH-INGS.

Solution sketch.

1. Let (X, Y) be a bipartition of V such that X and Y are independent sets If $|X| \neq |Y|$, then return 0. Denote $X = \{x_1, \ldots, x_{n/2}\}$ and $Y = \{y_1, \ldots, y_{n/2}\}$. For each permutation $\pi = (y_{\pi(1)}, \ldots, y_{\pi(n/2)})$ of Y,

$$\{x_i y_{\pi(i)} : 1 \le i \le n/2\}$$

is a perfect matching iff $x_i y_{\pi(i)} \in E$ for each $i \in \{1, \ldots, n/2\}$.

2. U: contains each set of n/2 edges $\{e_1, \ldots, e_{n/2}\}$ such that $x_i \in e_i$. For each $v \in Y$, $A_v = \{S \in U : v \in \bigcup S\}$. The number of perfect matchings is

$$\left| \bigcap_{v \in Y} A_v \right| = \sum_{S \subseteq Y} (-1)^{|S|} \left| \bigcap_{v \in S} \overline{A_v} \right|$$
$$= \sum_{S \subseteq Y} (-1)^{|S|} \prod_{i=1}^{n/2} |N(x_i) \setminus S|.$$