Buses and Parallel
Input/Output

Lecturer: Sri Parameswaran
Notes by: Annie Guo

Lecture Overview

e Buses
Computer buses

e |/O Addressing

Memory mapped I/O
Separate I/O

e Parallel input/output
AVR examples

000
Five Components of i
| X
Computers :
Computer
Processor Memory Devices Keyboard
(aCUVe) (passive) InpUt M.()use
Disk
Cont.rm (where
(“brain”) programs, _
darllta live Disk,
Datapath when Display,
(“brawn”) running) Printer

Buses

o A

collection of wires through which data is

transmitted from one of sources to destinations

o A

1 r

il 12

| buses consist of three parts:
data bus
transfer actual data
address bus
transfer information about where the data should go.
control bus 4
transfer control signals

Characteristics of Buses

e For system or higher level designs, buses
can be characterized In
Bus width (in bits)

Determines how much data can be transmitted at a
time. E.g. 16 bits, 32 bits

Clock speed in MHz

Determines how often data can be transferred on the
busses

Typical Computer Bus

Structure

Data Bus

CPU

Memory

Parallel Serial
/O /O
Device Device
/O
Interface

Address Bus

Control Bus

Computer Buses

e CPU is connected to memory and I/O devices via
data, address and control buses.

e Data bus is bi-directional and transfers information
(memory data and instructions, I/O data) to and from
CPU.

e Address bus is most often unidirectional because
the CPU is the only source of addresses.

e Control bus carries all control signals required to
control the operation of the data transfer.

Computer Buses (cont.)

e Each line of a bus has multiple sources and
destinations. The bus transfers data from one
source each time.

Multiple Destinations

Data Bus

CPU

Multiple Sources

Input Interface

e Connects multiple data sources
Only one source data is sent to the bus at a time

e Often implemented with three-state buffers
for data buses

For example,

a parallel, eight-bit input data is connected to eight
three-state gates whose enable lines are tied together

When the data is to sent to the bus the eight three-
state gates are enabled.

e The open-collector gate Is often used for
control signals such as request for interrupts
Since one way switch is often required.

9

Typical Bus Interface Gates

Data source input

Bus line
e v

1G
1G A Y
O 0 O
O 1 1
1 0 X
11X High
Impedance

(a) Three-state
gate

External
Pull-up
Resistor

O
- Open
Collector

/S S S

(b) Typical open-collector
gate

10

Output Interface

e The output interface between the data bus
and a destination or output device contains a

latch.

DBn

Clock

D Q

74116 Dual 4-bit
Latch with Clear

A C1

C2

Py

Destination or
Output Device

I
/77

11

Address Decoding

e The interface must provides the ability for
CPU to select one of many sources and
destinations.

The address decoder Is used.

12

Address Decoding for Input
Devices

Source

Info

74L.S139
2-0f-4
Decoder
Al
From Al SN
CPU A0 OO0
AO 010
Read A5 N
0 E 02
Control E -
O30
Info Info Info
Source Source Source
——O) 0 9

To/From
CPU

Q

Data Bus

13

000
| 0000
Address Decoding for Output | ss:¢
. o0
Devices .
74L.S139
2-of-4
Decoder
Al
From Al .
CPU A0 O0[
AO 010
Write - A7
Control‘C E 02
O30
O O O O
N 74116 N 74116 74116 74116
Dual 4-Bit Dual 4-Bit Dual 4-Bit Dual 4-Bit
Latch Latch Latch Latch
To/From
CPU

Data Bus

14

CPU Timing Signals

e CPU must provide timing and synchronization
so that the transfer of information occurs at
the right time.

CPU has its own clock.
I/O devices may have a separate 1/O clock.
Typical timing signals include READ and WRITE.

15

Typical CPU Read Cycle

CPU Clock

Address
Bus

Data Bus

READ
Control
Signal

address from CPU valid

| C

data from device

valid

16

Typical CPU Read Cycle

e CPU places the address on the address bus
at point A.

e The control signal READ Is asserted at point
B to signal the external device that CPU is
ready to take the data from the data bus.

e CPU reads the data bus at point C whether or
not the input device has made it ready

If NOT, some form of synchronization is required.

17

Typical CPU Write Cycle

CPU Clock

Address
Bus address from CPU valid

| B

Data Bus data from CPU
valid

WRITE

Control
Signal

18

Typical CPU Write Cycle

CPU places the address on the address bus at point
A

The data bits are supplied by CPU at point B.

The control sighal WRITE is asserted by CPU at
point C to signal the external device that the data is
ready to be taken from the data bus.
This signal is used to create the clock to latch the data at
the correct time.
Depending on the type of latch and when WRITE is
asserted, the data may be captured on the falling
edge or rising edge.

19

Complete I/O Interface

Data Bus

74L.S244 Octal
Buffer

1A

SOURCE_ADR_OK

Source

DES_ADR_OK

7415139
2-0f-4
Decoder
Al
Al
NaYa 1l
AQ 00
AO 010
READ | o 020
030
Al
Al
NaYa Y8
AO S
AQ 01D
WRITE | = 020
030

74116 Dual
4-Bit Latch

Destination

20

Complete I/O Interface (cont.)

e READ and WRITE control the enable (E).

e The three-state enables and the latch clock
signals are not asserted until the correct
address is on the address bus AND the
correct time in the read or write cycle has
arrived.

21

/O Addressing

e If the same address bus is used for both
memory and I/O, how does hardware
distinguish between memory reads/writes
and I/O reads/writes?

Two approaches:

Memory-mapped I/O.
Separate 1/O.

AVR supports both.

22

Memory Mapped I/O

e The entire memory address space is divided

Into memory space and |I/O space.

Memory

/0O

23

AVR Memory Mapped I/O

e In AVR, 480 1/O

registers are mapped Data Memory Map
Into memory space e padress (15X
0x0020 ~ OxXO1FF _— 64U0Registers | 20-5F
1 byte each e
e With such memory E,:QZHLM 0
addresses, accesses 07
to the 1/O registers e

use memaory access
type of instructions. 5

Memory Mapped I/O (cont.)

e Advantages:
Simpler CPU design.
No special instructions for I/O accesses.

e Disadvantages:

I/O devices reduce the amount of memory space
available for application programs.

The address decoder needs to decode the full
address bus to avoid conflict with memory
addresses.

25

/O Interface for Memory-

Mapped I/O

Address
Bus

Data Bus

Decoder

)\

Information
Destination

Information

READ

WRITE

26

Separate I/O

e Two separate spaces for memory and 1/O.

Less expensive address decoders than those
needed for memory-mapped I/O (Why?)

e Additional control signal, called IO/M, Is
required to prevent both memory and I/O
trying to place data on the bus
simultaneously.

IO/M is high for 1/0O use and low for memory use.
e Special I/O instructions are required.

27

/O Interface for Separate |I/O

Data Bus

Reduced)(

Address Bus ADR_OK \
@ — 5
—a
IO_READ %

Information Source -

Decoder

memory

READ

oM D i}ﬁﬁ

Information Source —
input device

28

Separate /O (cont.)

e In AVR, the first 64 |/O registers can also be
addressed with separate addresses 0x00 ~
Ox3F

1 byte each

e With such separate addresses, the I/O
registers are accessed using I/O specific
Instructions.

E.g. in and out

29

/O Synchronization

e CPU is typically much faster than I/O devices.

e Therefore, synchronization between CPU and
/O devices is required.

e Two synchronization approaches:
Software synchronization.
Hardware synchronization.

30

Software Synchronization

Two software synchronization approaches:

e Real-time synchronization

Uses a software delay to match CPU to the timing
requirements of the 1/O device.

The timing requirement must be known
Sensitive to CPU clock frequency.
Wastes CPU time.

e Polling l/O

A status register, with a DATA_READY bit, is added to
the device. The software keeps reading the status
register until the DATA _READY bit is set.

Not sensitive to CPU clock frequency.
Still waste CPU time, but CPU can do other tasks. 3

Handshaking I/O

e A hardware synchronization approach with control
sighal READY or WAIT.

For an input device, when CPU is asking for input data, the
Input device will assert WAIT if the input data is NOT
available. When the input data is available, it will deassert
WAIT. While WAIT is asserted, CPU must wait until this
control signal is deasserted.

For an output device, when CPU is sending output data via
the data bus, the output device will assert WAIT if it is not
ready to take the data. When it is ready, it will deassert
WAIT. While WAIT is asserted, CPU must wait until this
control signal is deasserted.

32

Input Handshaking Hardware

To CPU WAIT

<
<«

DATA REQUEST

Address Bus
ﬁg @

INPUT DEVICE
Wait State
Logic
Data Register
INFO_ADD_OK

READ

Data Bus

:

33

$33
" " o0
Read Cycle with Wait States :
I A WAIT STATES
gﬁ:ress X Address From CPU Valid
¢ F
gjéa Data Bus Tri-State / Data From
\ Device Valid

B

READ
Control Signal

f
=

AR

(
|

Control Signal

WAIT
Control Signal

Parallel Input/Output in AVR

e Communication through ports

e There are two special instructions designed
for parallel input/output operations
in
out

35

Atmega2560 Pin Configuration

(AXDE) PHY
(TXOE) PH1

O PHE
(DC4A) PHE
(OCAE) PH4
(DC40) PHE
(OCIE) PHE
(EAFCINTI) FE
{SCKPCINT) FRA
(MOSUFCINTZ) PRE
[(MISONFCINTS) PES
(DC2AFCINT4) PBS
(D1 AFCINTS) PRS
(DCIRFCINTE) PBE

Source: Atmega2560

Data Sheet

Eleloizinizicininis

& [E] (=] [5] [3] [E (= [E1 [E] [=]

=]

[E] [E]

[E]

ki

]

0 CONGCC W PCINTT) PRT

[E] PeOADCAFONTIA

eI
WRCINTHE

AR HE

B E E B

H H HH

T csfe o .

FEEFEEEE T

elzlzlzlalzlz

FEEEEEEE

S g BgREE
E-8@ <
Eéiiﬂ
68§58

FiE [PCINT15)
P [FCINT14)
P34 [PCINT13)
P [PCINTE)
PR (RCEAPCINTI1)
Bl (TEDSPONT 10
Pl [RECGPCINTS

b ORD

WCC

FCT (A15)
PCE (A14)
PCE (A13)
FC4 (A12)
PCE (A11)
PC2 (A10)
PO (a8
FOO (A8
Fan (RO}
PO (R

36

FET L Al RRS FErD
WL P & &
£ I e e e e e e
I Fremr
= PR IO & POFT 5 PORTE) POAT Ji% FOFTE(E |
1 FREET N F 3 * s F 3
l L 3 L 3 Yy
=
=| == Y
_'*‘ 1 L
AT
I Wkiciiy ma . Mo SR PR iy ST
ATALH | IA ——
J:“j_i i s intmal 1B TGS
ot e
= I:I I l:t:l.u Endgey-mimes A
| I Cimrsarsbon
_I:l LT T - LEaAT
L e | f
| . o AR S
R | FOAT AR i. - 18 b DG4 I-.. =
| I T — =
] ¥ !
FEED I FOFTEE [e T FLagH SFEd WETC! | -
|1 f
|
BTO -|—|— FORTCE (3 T# =21 EETCO Bk TG USAAT 2
o F 3
| : ! ! , ,
I 3 & A
NOTE:
| Hraded partscnly avalabla
iri tha 1000 vergion. ‘l'
| E L L r k b A
Oomploto furetiorality for FOATE PORTH
1mmmmu€5m FORITN® o o FORTL
I avadabia in tha T00pin varsion. _l I -I I_
POl P) RHT.0 ATA

Source: Atmega2560 Data Sheet

AVR PORTSs

e Can be configured to receive data or send out data

e Include physical pins and related circuitry to enable
Input/output operations.

e Different AVR microcontroller devices have different
port design

ATmega2560 has 100 pins, most of them form eleven
ports for parallel input/output.

Port A to Port H, Port J to Port L
Three I/O memory addresses (in data memory) are
allocated for each port

PORTX for data register

DDRXx for data direction register
PINXx for port input pins

38

Load I/O Location to Register

e Syntax: in Rd, A
e Operands: 0<d<31,0<A<63
e Operation: Rd < I/O(A)

e Words: 1
e Cycles: 1
e Example:

in r25, 0x00 ; read from port A

39

Store Register to I/O Location

e Syntax: out A, Rr
e Operands: 0<r<31,0<A<63
e Operation: I/O(A) € Rr

e Words: 1
e Cycles: 1
e Example:

out 0x02, r16 , Write to port A

40

000
0000
y " " 0000
Ne-ol ort Circuitr eco
A
| o<l| B PUD
A
- 2 O leg
DD
B Y
— L woy
RESET
§ l\l\i RDx
L o
D
1
Pxn - . < P, p?}mfn = <
e =
I WPx O
RESET
o SLEEP I\i HRx
|
SYNCHRONIZER
- — RPx
[oD o D@ I ['E
= | Pihxn I L
L @ > 7
Source: Atmega2560 Data Sheet —
WDx: WRITE DDRx
PUD: PULLUP DISAELE RDx: HEAD DDR){
SLEEP CONTROL WPx: 41

SLEEP:
clk,: I/0 CLOCK RRx: HEAD F'OF?TX H‘EGISTEH‘
RPx: READ PORTx P

How does it work?

e Each port pin consists of three register bits

DDxn, PORTxn, and PINXxn.
DDxn bits are accessed at the DDRx I/O address,
PORTXn bits at the PORTx I/O address
PINxn bits at the PINx I/O address.

e The DDxn bit in the DDRXx Register selects
the direction of this pin.

If DDxn is written logic one, Pxn is configured as
an output pin. If DDxn is written logic zero, Pxn is
configured as an input pin.

42

How does it work? (cont.)

e \When the pin is configured as an input pin,
the pull-up resistor can be
activated/deactivated.

e To active pull-up resistor for input pin,
PORTXn needs to be written logic one.

43

Sample code for output

“m2560def.inc”

clr
ser
out

out
nop
out

rle6

rl7

DDRA, rl17
PORTA, rlé6

PORTA, ri17

clear rilé6
set rl7
set Port A for output operation

: write zeros to Port A
; wait (do nothing)
: write ones to Port A

44

Sample code for input

exit:

“m2560def.inc”

clr ril5
out DDRA, r15

in r25, PINA
cpi r25, 4

breq exit

nop

; compare read value with constant
; branch if r25=4

; branch destination (do nothing)

set Port A for input operation

read Port A

45

Example 1

e Design a simple control system that can
control a set of LEDs to display a fixed

pattern.

OCO0000000

!
OCO0000000

46

LED and its operation

D@ BE@

J34

MLAM%

1N) N N

|

:
§ | SRRARLRLTEA
T
LFRRRRRRGE
a?

Example 1 (solution)

e Consists of a number of steps:

e Set a port for the output operation, each pin of the ports is
connected to one LED

o Write the pattern value to the port so that it drives the LEDs
to display the related pattern.

“m2560def.inc”

ser rlé
out DDRA, rl6 ; set Port A for output
1di rl16, OxAA ; write the pattern

out PORTA, rilé6
end:

rjmp end 18

Example 2

e Design a simple control system that can
control a set of LEDs to display a fixed
pattern for one second then turn the LEDs

off. 00000000
Q0000000
00000000

49

Example 2 (solution)

e Consists of a number of steps:

e Set a port for the output operation, each pin of the
ports iIs connected to one LED

o Write the pattern value to the port so that it drives
the display of LEDs

e Count one second
e Write a pattern to set all LEDs off.

50

Counting one second

e Assume we know that the clock cycle period
IS 1 ms (very very slow, not a real value).
Then we can write a program that executes

%0_3 = 1x10°

single cycle instructions.

e Execution of the code will take 1 second If
each instruction in the code takes one clock
cycle.

e An implementation is given in the next slide

51

Code for one second delay

loop:

done:

“m2560def.inc”
loop _count = 124
iH = r25
il = r24
countH = rl17
countL = rilé6
oneSecondDelay
1di countL, low(loop_ count)
1di countH, high(loop_ count)
clr iH
clr iL
cp iL, countL
cpc iH, countH
brsh done
adiw iH:iL, 1
nop
rjmp loop

e

1 cycle

1

1, 2 (if branch)
2

52

Code for Example 2

end:

“m2560def.inc”
ser ri15
out DDRA, ril15

1di rl15, OxAA
out PORTA, ri5
oneSecondDelay
1di rl15, 0x00
out PORTA, r15

rjmp end

oo

oo

set Port A for output

write the pattern

1 second delay

turn off the LEDs

53

Example 3

e Design a simple control system that can
control a set of LEDs to display a fixed
pattern specified by the user.

OCO0000000

!
OCO0000000

54

Example 3 (solution)

e Consists of a number of steps:

Set the switches and connect the switches to the
pins of a port

Set the port for input
Read the input

Set another port for the output operation, each pin
of the ports is connected to one LED

Write the pattern value to the port so that it drives
the display of LEDs

55

Code for Example 3

end:

“m2560def.inc”
clr rl17
out DDRC, rl7
ser rl7
out PORTC, ri17
in rl7, PINC

ser rle6
out DDRA, ril6

out PORTA, rl17

rjmp end

: from the switches

; write the input pattern

set Port C for input

activate the pull up
read pattern set by the user

set Port A for output

56

Example 4

e Design a simple control system that can
control a set of LEDs to display a pattern
specified by the user during the execution.

57

Example 4 (solution)

e One solution is the processor continuously
checking if there Is an input to read. If there
IS, then read the input and go to next task,

ot
IN

nerwise the processor stays waiting for
put. Such an approach to handle dynamic

N

out is called polling.

58

Code for Example 4

e Set an extra input bit for signal from user when
the input is ready.

waiting:

end:

“m2560def.inc”

cbi DDRB, ©

sbis PINB, ©
rjmp waiting

clr rl17

out DDRC, rl17
ser rl7

out PORTC, rl17
in rl7, PINC

ser rlé6
out DDRA, rilé6

out PORTA, rl17
rjmp end

; clear Port B bit @ for input

; 1f yes skip to the next instruction
; waiting

; set Port C for input

; activate the pull up

; read pattern set by the user

: from the switches

; set Port A for output

Reading Materials

e Chapter 7. Computer Buses and Parallel
Input and Output. Microcontrollers and
Microcomputers by Fredrick M. Cady.

e ATmega2560 Data Sheet.

AVR CPU Core
PORTS

60

Homework

1. Refer to the AVR Instruction Set manual,
study the following instructions:

Arithmetic and logic instructions
ser

Data transfer instructions
in, out

Bit operations
sbi, cbi

Program control instructions
sbic, sbis

MCU control instructions
nop

61

Homework

2. To make the AVR processor skip an amount
of time without doing anything, we use nop
Instruction in the program shown in the
example in this lecture. Can we use

mov Rd, Rd to replace the nop instruction?
Any difference?

62

Homework

3.0ne of very common functions a microcontroller
application usually has is timing control. The function
below is such a timing control function. Convert it to
assembly program.

static int iSeconds, iMinutes:
void timing-control(void) {
++iSeconds;
if (iSeconds »>= 60) {
iSeconds = 0;
++iMinutes;
if (iMinutes > 30) {
//do something
//and reset the timer

63

