Answer Set Programming

Christoph Schwering
UNSW Sydney

COMP4418, Week 6



Contact

B Email: c.schwering@unsw.edu.au
B Research associate in the Al group

B Interests: Knowledge Representation and Reasoning

Formalisation knowledge, belief, actions, sensing
Tractable reasoning for highly expressive languages

2/31



ASP at a Glance

B ASP = Answer Set Programming
ASP £ Microsoft's Active Server Pages

3/31



ASP at a Glance

B ASP = Answer Set Programming
ASP £ Microsoft's Active Server Pages

B ASP belongs to logic programming

Like Prolog: Head < Body or Head : - Body .
Like Prolog: negation as failure
Unlike Prolog: Head may be empty = constraints

3/31



ASP at a Glance

B ASP = Answer Set Programming
ASP £ Microsoft's Active Server Pages

B ASP belongs to logic programming

Like Prolog: Head < Body or Head : - Body .
Like Prolog: negation as failure
Unlike Prolog: Head may be empty = constraints

B Declarative programming

Unlike Prolog: no procedural control
Order has no impact on semantics

3/31



ASP at a Glance

B ASP = Answer Set Programming
ASP £ Microsoft's Active Server Pages

B ASP belongs to logic programming

Like Prolog: Head < Body or Head : - Body .
Like Prolog: negation as failure
Unlike Prolog: Head may be empty = constraints

B Declarative programming

Unlike Prolog: no procedural control
Order has no impact on semantics

B ASP programs compute models

Unlike Prolog: not query-oriented, no resolution
Unlike Prolog: not Turing-complete
Tool for problems in NP and NPNP (common belief: NP € NPMF)
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Example: Graph Colouring

Definition: graph colouring problem

Input: graph with vertices V and edges E C V x V, set of colors C.
Is there a mapping m : V.— C with m(x) # m(y) for all (x,y) € E?

Adopted from Potassco Slide Packages 4 /31



Example: Graph Colouring

Definition: graph colouring problem

Input: graph with vertices V and edges E C V x V, set of colors C.
Is there a mapping m : V.— C with m(x) # m(y) for all (x,y) € E?

Adopted from Potassco Slide Packages 4 /31



Example: Graph Colouring

Definition: graph colouring problem

Input: graph with vertices V and edges E C V x V, set of colors C.
Is there a mapping m : V.— C with m(x) # m(y) for all (x,y) € E?

B Graph Coulouring is NP-complete

» NP: guess solution, verify in polynomial time
» NP-complete: among hardest in NP

B Many applications:

» Mapping (neighbouring countries to different colors)
» Scheduling (e.g., conflicting jobs to different time slots)
» Allocation problems, Sudoku, ...
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Example: Graph Colouring

Definition: graph colouring problem

Input: graph with vertices V and edges E C V x V, set of colors C.
Is there a mapping m : V.— C with m(x) # m(y) for all (x,y) € E?
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Example: Graph Colouring

Definition: graph colouring problem

Input: graph with vertices V and edges E C V x V, set of colors C.
Is there a mapping m : V.— C with m(x) # m(y) for all (x,y) € E?
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Applications of ASP

B Automated production configuration

B Decision-support system for space shuttle

B Bioinformatics (diagnosis, inconsistency detection)
B General game playing

Several implementations are available

For this lecture: Clingo www.potassco.org
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Overview of the Lecture

B Semantics of ASP programs
B Extensions of ASP programs
B Handling of variables in ASP

B ASP as modelling language
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Motivation

Consider the following logic program:

Hm a. a.
c<+a,b. c:-a,b.
d <+ a,notb. d:-a,noth.
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Motivation

Consider the following logic program:

ma.
c<+a,b.
d < a,notb.

a
anb—c
an-b—d
B Prolog proves by SLD resolution:

Proves a (for a is a fact)

Cannot prove b (for b is in no head)
Cannot prove c (for cannot prove b)

Proves d (for prove a but not b)

B What is the semantics of this logic program?
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M, corresponds to Prolog, what is special about M;?
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Motivation

Consider the following logic program:

H a. a
c<+a,b. aAb—c
d <+ a,notb. an-b—d

B Prolog proves by SLD resolution:
Proves a (for a is a fact)
Cannot prove b (for b is in no head)
Cannot prove c (for cannot prove b)
Proves d (for prove a but not b)

B What is the semantics of this logic program?

alb|c|d alb|c

Models: M1:1 BRI M2:1 T

M, corresponds to Prolog, what is special about M;?
M, is a stable model a.k.a. answer set:
M, only satisfies justified propositions

ASP gives semantics to logic programming
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Intuition

The motivating guidelines behind stable model semantics are:
B A stable model satisfies all the rules of a logic program

B The reasoner shall not believe anything they are not forced to
believe — the rationality principle

The rationality principle is related to non-monotonic reasoning:
B Closed-world assumption
B Autoepistemic logic
B Default logic

For now: only ground programs, i.e., no variables
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Syntax

Definition: normal logic program (NLP)

A normal logic program P is a set of (normal) rules of the form
A<+ By, ...,By,notCyq, ...,notCy.

where A, B;, C; are atomic propositions.

When m = n = 0, we omit the “<-" and just write A.
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Syntax

Definition: normal logic program (NLP)

A normal logic program P is a set of (normal) rules of the form
A<+ By, ...,By,notCyq, ...,notCy.

where A, B;, C; are atomic propositions.

When m = n = 0, we omit the “<-" and just write A.

For such a rule r, we define:
®m Head(r) = {A}
B Body(r) = {Bi,...,Bm,notCy,...,notC,}
In code, riswrittenasA :- By, ...,By,notCy, ..., notC,.
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Semantics: Interpretation

Definition: partial interpretation, satisfaction
A partial interpretation S is a set of atomic propositions.

S satisfiesA < By, ...,By,,notCq, ...,notC, iff
A€ SorB; ¢ SforsomeiorC; S forsomej.

In English:
B S satisfies rule iff S satisfies the head or falsifies the body

m S falsifies body iff S falsifies some B; or satisfies some C;
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Semantics: Interpretation

Definition: partial interpretation, satisfaction

A partial interpretation S is a set of atomic propositions.

S satisfiesA < By, ...,By,,notCq, ...,notC, iff
A€ SorB; ¢ SforsomeiorC; S forsomej.

In English:
B S satisfies rule iff S satisfies the head or falsifies the body
m S falsifies body iff S falsifies some B; or satisfies some C;

Ex.. LetP={a. c<«+ a,b. d<+ a,notb.}

S ={a, b, c} satisfies a, but it does not satisfy (notb).
S = {a, b, c} satisfies c «+— a,b as well as d « a,notb.
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Semantics without Negation

Definition: stable model for programs without negation

For P without negated literals:
S is a stable model of P iff
S is a minimal set (w.r.t. C) that satisfies all r € P.
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Semantics without Negation

Definition: stable model for programs without negation

For P without negated literals:
S is a stable model of P iff
S is a minimal set (w.r.t. C) that satisfies all r € P.

Ex:P={a. c«+ab.}

S1 = {a} is a stable model of P
Sy = {a,b} is not a stable model of P
S3 = {a,b,c} is not a stable model of P

Theorem: unique-model property

If P is negation-free (i.e., contains no (not C)), then there is exactly
one stable model, which can be computed in linear time.
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Semantics without Negation - Examples

The stable model of a negation-free program can be computed by
forward chaining.
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Semantics without Negation - Examples

The stable model of a negation-free program can be computed by
forward chaining.

Ex. Py ={a. b+ a}

st ={a}
S? = {a,b}
Fixpoint

Ex.Py={a+b. b« a.}

st=1{}

Fixpoint

Ex:Ps={a+b. b+ a a}
St = {a}

S? = {a,b}

Fixpoint
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Semantics with Negation

Definition: reduct

The reduct P of P relative to S is the least set such that
ifA < Bi,...,Bp,notCy, ...,notC, € Pand Cy,...,C, ¢ S
thenA < By, ...,By € PS.

In English: for each rule r from P,
m if (notC) € Body(r) for some C € S: drop it
B else: remove all negated literals and add to PS

13731
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Semantics with Negation - Examples

Ex.. P = {a <— notb. b < nota.}

Si={a} = P"={a} v
Sy = {b} = P52 = {b.} v
S3 ={a,b} = PSS:{} X
Two stable models!

Ex.: P = {a < nota.}

S1={} = P={a} X
Sy = {a} = P52 = {} X

No stable model!
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Semantics: Overview

Definition: reduct

The reduct P of P relative to S is the least set such that
ifA <+ Bi,...,Bp,notCy, ...,notC, € Pand Cy,...,Ch ¢ S
thenA < By, ...,By € PS.

Definition: stable model

If P contains no (not C):
S is a stable model of P iff
S is a minimal set (w.r.t. C) that satisfies all r € P.

If P contains (not C):
S is a stable model of P iff S is a stable model of PS.

Theorem: necessary satisfaction condition

If S is a stable model and A € S, then S satisfies some r € P with
A € Head(r).
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Semantics - Examples

Ex.P={a<a. b+« nota.}
S ps Stable model?

Ex.. P={a < notb. b« notc.}
S ps Stable model?

Example on paper
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Entailment

Definition: entailment, cautious monotonicity

P entails a rule r iff every stable model of P satisfies r.
P is cautiously monotonic iff
for all rules rq, g, if P entails r; and rg, then P U {r; } entails r.
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Definition: entailment, cautious monotonicity

P entails a rule r iff every stable model of P satisfies r.
P is cautiously monotonic iff
for all rules rq, g, if P entails r; and rg, then P U {r; } entails r.

If P is cautiously monotonic, a solver can iteratively augment it with
already proved lemmas. Bad news: it does not hold in general.

Ex. P = {a < notb. b<c,nota. c<+a.}
S1={a,c} = PSi={a. c+a} v
(no other stablemodel S:b ¢ S=ac€S=ceSandbeS=ce€S=aecS=b¢9)
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Entailment

Definition: entailment, cautious monotonicity

P entails a rule r iff every stable model of P satisfies r.
P is cautiously monotonic iff
for all rules rq, g, if P entails r; and rg, then P U {r; } entails r.

If P is cautiously monotonic, a solver can iteratively augment it with
already proved lemmas. Bad news: it does not hold in general.

Ex. P = {a < notb. b+ c,nota. c+ a.}

S1={a,c} = PSi={a. c+a} v
(no other stablemodel S:b ¢ S=ac€S=ceSandbeS=ce€S=aecS=b¢9)
S1={a,c} = PU{c})={a c+a c} v
Sy ={b,c} = (PuU{c})¥>={b+c c<+a c} v

(no other stable model S:c € Sanda ¢ S=becSandb¢ S=a €S
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Entailment

Definition: entailment, cautious monotonicity

P entails a rule r iff every stable model of P satisfies r.
P is cautiously monotonic iff
for all rules rq, g, if P entails r; and rg, then P U {r; } entails r.

If P is cautiously monotonic, a solver can iteratively augment it with
already proved lemmas. Bad news: it does not hold in general.

Ex. P = {a < notb. b+ c,nota. c+ a.}

S1={a,c} = PSi={a. c+a} v
(no other stablemodel S:b ¢ S=ac€S=ceSandbeS=ce€S=aecS=b¢9)
S1={a,c} = PU{c})={a c+a c} v
Sy ={b,c} = (PuU{c})¥>={b+c c<+a c} v

(no other stable model S:c € Sanda ¢ S=becSandb¢ S=a €S

Good news: some classes of programs are cautiously monotonic.
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Overview of the Lecture

B Semantics of ASP programs
B Extensions of ASP programs
B Handling of variables in ASP

B ASP as modelling language
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Integrity Constraints

Definition: integrity constraint

An integrity constraint is a rule r of the form
< B1, ...,Bp,notCy, ..., notC,
S satisfies r iff B; ¢ S for someior C; € S for some.
PS contains + Bi, ...,Byiff Pcontainsrand Cy,...,Cy ¢ S.
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Integrity Constraints

Definition: integrity constraint

An integrity constraint is a rule r of the form
< By, ...,Bn,notCy, ...,notCy
S satisfies r iff B; ¢ S for someior C; € S for somej.
PS contains + Bi, ...,Byiff Pcontainsrand Cy,...,Cy ¢ S.

Theorem: reduction to normal rules

Let P’ be like P except that every integrity constraint
< Bi,...,Bn,notCy, ...,notCy
is replaced with
dummy < B, ...,Bny,notCy, ...,notC,, notdummy
for some new atom dummy.
Then P and P’ have the same stable models.

Proof on paper
19731



Choice Rules

Definition: choice rule

A choice rule is a rule the form
{Al, e ,Ak} < Bi,...,Bp,notCy, ...,notCy
which allows any subset of {A1, ..., A} in a stable model.
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Choice Rules

Definition: choice rule

A choice rule is a rule the form
{Al, e ,Ak} < Bi,...,Bp,notCy, ...,notCy
which allows any subset of {A1, ..., A} in a stable model.

Theorem: reduction to normal rules

A choice rule can be encoded by 2k + 1 normal rules using 2k + 1
new atoms.

Further extensions:
m Conditional literals: {A : B}
Ex.: {m(v,C) : ¢(C)} expands to {m(v,r),m(v,g), m(v,b)}
B Cardinality constraints: min {A1, ... ,Ax} max
Ex.: 1 {m(v,r),m(v,g),m(v,b)} 1
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Negation in the Rule Head

Definition: rules with negated head

A rule with negated head is of the form
notA < Bq, ...,By,notCy, ...,notCy
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Negation in the Rule Head

Definition: rules with negated head

A rule with negated head is of the form
notA < By, ...,By,notCq, ...,notCy

Theorem: reduction to normal rules
Let P’ be like P except that every rule with negated head

notA < By, ...,Bp,notCy, ...,notCy
is replaced with
< Bi, ...,By,notCy, ...,notCy, notdummy

and
dummy < notA
for some new atom dummy.
Then P and P’ have the same stable models (modulo dummy
propositions).
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Complexity

Theorem: complexity of NLPs without negations

Is S a stable model of a negation-free P? - Linear time
Does a negation-free P have a stable model? - Yes

Theorem: complexity of NLPs with negations

Is S a stable model of P? - Linear time
Does P have a stable model? - NP-complete

Note: integrity constraints, choice rules, conditional literals,
cardinality constraints, negation in heads preserve complexity
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Disjunctive Logic Programs

Definition: disjunctive rule

A disjunctive rule is of the form
Ag; ... ;A < By, ...,By,notCy, ...,notC,
and means that A; or A; or ...or Ay is true if the body is true.
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Disjunctive Logic Programs

Definition: disjunctive rule
A disjunctive rule is of the form
Ag; ... ;A < By, ...,By,notCy, ...,notC,
and means that A; or A; or ...or Ay is true if the body is true.

Theorem: complexity of disjunctive logic programs

Is S a stable model of P? - co-NP-complete
Does P have a stable model? - NPNP-complete

Reason: PS may have multiple minimal models!
We won't consider disjunctive logic problems any further
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Overview of the Lecture

B Semantics of ASP programs
B Extensions of ASP programs
B Handling of variables in ASP

B ASP as modelling language
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Programs with Variables

B Atomic propositions may now contain variables, e.g.,
p(X,Z) «e(X,Y),p(Y,Z).
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U contains all f(t1, ..., tx) from Pif f is a k-ary function in P
and U contains ty, ..., tk
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Programs with Variables

B Atomic propositions may now contain variables, e.g.,
p(X,Z) «e(X,Y),p(Y,Z).

B Herbrand universe

U contains all constants from P
U contains all f(t1, ..., tx) from Pif f is a k-ary function in P

and U contains ty, ..., tk

B ASP grounds variables with Herbrand universe
Unlike Prolog: instantiation instead of unification
Caution: the ground program may grow exponentially
Caution: function symbols make grounding Turing-complete
If P is finite and mentions only constants, grounding is finite
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Programs with Variables
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Overview of the Lecture

B Semantics of ASP programs
B Extensions of ASP programs
B Handling of variables in ASP

H ASP as modelling language
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. c(r).
ASP Modeling mﬁ. f(g)-v(cga).
(1.2). ¢(1,5)"
:((:i’f o 5)) " e((zl,’:))
Typical ASP structure: (54, 1) 6(4”;)) e(3, 5

m Problem instance: a set of facts «(6,2). :((ég’;)' e(5,6).
B Problem class: a set of rules o

Generator rules: often choice rules ! {m(x, ) .

. . . c(C .
Test rules: often integrity constraints @31

VX)),

e(x,y), %, C), myy %)

Ideal modeling is uniform: problem class encoding fits all
instances

Semantically equivalent encodings may differ immensely in
performance!
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Example: Non-monotonic Reasoning

Tweety the penguin:
B Normal birds fly.
B Penguins are abnormal.
B Tweety is a bird. So Tweety flies.
B Tweety is a penguin. So Tweety doesn't fly.
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Example: Non-monotonic Reasoning

Tweety the penguin:
B Normal birds fly.
B Penguins are abnormal.
B Tweety is a bird. So Tweety flies.
B Tweety is a penguin. So Tweety doesn't fly.

Ex: Uy = {f(X) « b(X),nota(X). a(X)« p(X). b(t).}

Py ={f(t) + b(t),nota( ). a(t) « p(t). b(t).
S1={b(t).f(0} = Pi' ={f(t) < b(t). a(t)
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Example: Non-monotonic Reasoning

Tweety the penguin:

B Normal birds fly.

B Penguins are abnormal.

B Tweety is a bird. So Tweety flies.

B Tweety is a penguin. So Tweety doesn't fly.
Ex.: U; = {f(X) « b(X),nota(X). a(X) < p(X). b(t).}
Py = {f(t) < b(t),nota(t). a(
S1=1{b(t).f()} = P{'={f(1

Ex.: Uy = Uy U{p(t).}
Py =Py U {p(t).}
S2 = {a(t),b(t),p(t)} = Py*={a(t) +p(t). b(). p().} v

>
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Example: Hamilton Cycle

Definition: Hamilton cycle problem

Input: graph with vertex setV and edges E C V x V.
Is there a cycle that visits every vertex exactly once?

r(X) < p(1,X).

+ notr(X),v(X).

{PX,Y)} + e(X,Y).

rY) <« rX),pX,Y).
«~2{pX,Y)} ,v(X).
«—2{pX,Y)} ,v(Y).
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Input: graph with vertex setV and edges E C V x V.
Is there a cycle that visits every vertex exactly once?

r(X) < p(1,X).

+ notr(X),v(X).

{PX,Y)} + e(X,Y).
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Example: N-Queens

Definition: N-queens problem

Place N queens on a N x N chessboard so that they do not attack
each other, i.e., share no row, column, or diagonal.

/

N Wb

Program on paper
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