Solution to COMP9334 Revision Questions for Week 5

Question 1

First note that one counter is not sufficient to serve all the customers. If we consider all the customers together, each customer carries on average 20.5 items, which takes $\frac{20.5}{15}$ to complete. Since the customer arrival rate is 1 , the utilisation will be above 1 if only one counter is used.

Let us refer to the two counters as Counter 1 and Counter 2. Let us assume that Counter 1 serves customers with x items or less and Counter 2 serves customers with more than x items, where $1 \leq x \leq 39$.

Let $\lambda(=1)$ denote the overall arrival rate and $\mu=15$ be the service rate of each counter.
Let us consider Counter 1 first. Since only customers with x items or less go to Counter 1 , the arrival rate at Counter 1 is $\lambda \frac{x}{40}$. The customers arriving at Counter 1 bring with them $1,2, \ldots, x$ items uniformly distributed. Let S_{1} denote the service time at Counter 1 . We have

$$
\begin{align*}
& E\left[S_{1}\right]=\sum_{i=1}^{x} \frac{i}{\mu} \frac{1}{x} \tag{1}\\
& E\left[S_{1}^{2}\right]=\sum_{i=1}^{x}\left(\frac{i}{\mu}\right)^{2} \frac{1}{x} \tag{2}
\end{align*}
$$

Let $\rho_{1}=\lambda \frac{x}{40} E\left[S_{1}\right]$, by the P-K formula, the mean waiting time at Counter 1 is

$$
W_{1}= \begin{cases}\lambda \frac{x}{40} \frac{E\left[S_{1}^{2}\right]}{2\left(1-\rho_{1}\right)} & \text { if } \rho_{1}<1 \tag{3}\\ \infty & \text { if } \rho_{1} \geq 1\end{cases}
$$

Similarly, the arrival rate to Counter 2 is $\lambda_{2}=\lambda \frac{40-x}{40}$. Let S_{2} denote the service time at Counter 2, then

$$
\begin{align*}
& E\left[S_{2}\right]=\sum_{i=x+1}^{40} \frac{i}{\mu} \frac{1}{(40-x)} \tag{4}\\
& E\left[S_{2}^{2}\right]=\sum_{i=x+1}^{40}\left(\frac{i}{\mu}\right)^{2} \frac{1}{(40-x)} \tag{5}
\end{align*}
$$

Let $\rho_{2}=\lambda \frac{40-x}{40} E\left[S_{2}\right]$, by the P-K formula, the mean waiting time at Counter 2 is

$$
W_{2}= \begin{cases}\lambda \frac{40-x}{40} \frac{E\left[S_{2}^{2}\right]}{2\left(1-\rho_{2}\right)} & \text { if } \rho_{2}<1 \tag{6}\\ \infty & \text { if } \rho_{2} \geq 1\end{cases}
$$

The mean waiting time of the customers is

$$
\begin{equation*}
W=\frac{x}{40} W_{1}+\frac{40-x}{40} W_{2} \tag{7}
\end{equation*}
$$

Note that W is a function of x. We write a computer program (Matlab file week05_q1.m) to calculate how W varies with x. Figure 1 shows how W varies with x. It can be seem that the minimum value of W is achieved at $x=28$.

Figure 1: For Question 1

Question 2

Let us first compute the second moment of each customer type. Let us use $C_{a}, \sigma_{a}, E\left[S_{a}\right]$ and $E\left[S_{a}^{2}\right]$ to denote, respectively, the coefficient of variation, standard deviation, mean and second moment of the service time of customer of type a. Recall that the coefficient of variation of a random variable is its standard deviation divided by mean, i.e $C_{a}=\frac{\sigma_{a}}{E\left[S_{a}\right]}$. By using the relation:

$$
\begin{equation*}
E\left[S_{a}^{2}\right]=E\left[S_{a}\right]^{2}+\sigma_{a}^{2}, \tag{8}
\end{equation*}
$$

it can be showed that

$$
\begin{equation*}
E\left[S_{a}^{2}\right]=E\left[S_{a}\right]^{2}\left(1+C_{a}^{2}\right) \tag{9}
\end{equation*}
$$

Since we know $E\left[S_{a}\right]=0.1$ and $C_{a}=1.5$, we can compute $E\left[S_{a}^{2}\right]$ using the above equation.
Similarly, let $C_{b}, \sigma_{b}, E\left[S_{b}\right]$ and $E\left[S_{b}^{2}\right]$ to denote, respectively, the coefficient of variation, standard deviation, mean and second moment of the service time of customer of type b. We have

$$
\begin{equation*}
E\left[S_{b}^{2}\right]=E\left[S_{b}\right]^{2}\left(1+C_{b}^{2}\right) \tag{10}
\end{equation*}
$$

With $E\left[S_{b}\right]=0.08$ and $C_{b}=1.2$, we can compute $E\left[S_{b}^{2}\right]$ using the above equation.
Requests of type a and b have equal priorities
This is an M/G/1 queue without priority. The arrival rate is 10 requests per second $(=\lambda)$. Since 30% of the request are type a and the remaining are type b, we have the mean service
time $E[S]$ and second moment $E\left[S^{2}\right]$ of the aggregate are, respectively,

$$
\begin{align*}
E[S] & =0.3 E\left[S_{a}\right]+0.7 E\left[S_{b}\right] \tag{11}\\
E\left[S^{2}\right] & =0.3 E\left[S_{a}^{2}\right]+0.7 E\left[S_{b}^{2}\right] \tag{12}
\end{align*}
$$

The mean response time is therefore $E[S]+\frac{\lambda E\left[S^{2}\right]}{2(1-\rho)}$ where $\rho=\lambda E[S]$.
Requests of type b have non-preemptive priority over type a
Let

$$
\begin{align*}
R & =\frac{1}{2}\left(0.3 \lambda E\left[S_{a}^{2}\right]+0.7 \lambda E\left[S_{b}^{2}\right]\right) \tag{13}\\
\rho_{a} & =0.3 \lambda E\left[S_{a}\right] \tag{14}\\
\rho_{b} & =0.7 \lambda E\left[S_{b}\right] \tag{15}
\end{align*}
$$

Response time of type b is

$$
\begin{equation*}
E\left[S_{b}\right]+\frac{R}{1-\rho_{b}} \tag{16}
\end{equation*}
$$

Response time of type a is

$$
\begin{equation*}
E\left[S_{a}\right]+\frac{R}{\left(1-\rho_{b}\right)\left(1-\rho_{a}-\rho_{b}\right)} \tag{17}
\end{equation*}
$$

Requests of type b have preemptive priority over type a
Let

$$
\begin{align*}
R_{b} & =\frac{1}{2}\left(0.7 \lambda E\left[S_{b}^{2}\right]\right) \tag{18}\\
R_{a} & =\frac{1}{2}\left(0.3 \lambda E\left[S_{a}^{2}\right]+0.7 \lambda E\left[S_{b}^{2}\right]\right) \tag{19}\\
\rho_{a} & =0.3 \lambda E\left[S_{a}\right] \tag{20}\\
\rho_{b} & =0.7 \lambda E\left[S_{b}\right] \tag{21}
\end{align*}
$$

Response time of type b is

$$
\begin{equation*}
E\left[S_{b}\right]+\frac{R_{b}}{1-\rho_{b}} \tag{22}
\end{equation*}
$$

Response time of type a is

$$
\begin{equation*}
E\left[S_{a}\right] \frac{1}{1-\rho_{b}}+\frac{R_{a}}{\left(1-\rho_{b}\right)\left(1-\rho_{a}-\rho_{b}\right)} \tag{23}
\end{equation*}
$$

The numerical answers are summarised in the following table.

Mean response time	Part 1	Part 2	Part 3
type a	0.8246	1.7787	1.9059
type b	0.8246	0.3150	0.2042

Observe that the response time for type b customers have become better because it has a higher priority, this is of course at the expense of type a customers which have a lower priority.

Question 3

The system behaves as an $\mathrm{M} / \mathrm{G} / 1$ queueing system.
Since there are 10 sessions each generating Poisson traffic at a rate of 150 packets/minute, the packet arrival rate to the communication line is 1500 packets/minute or 25 packets/s $(=\lambda)$.

With a transmission rate of $50 \mathrm{kbits} / \mathrm{s}$, a 100 -bit packet requires a transmission time (= service time in queueing theory terminology) 0.002 s and a 1000 -bit packet requires a transmission time of 0.02 s . (Recall that transmission time is packet size divided by transmission rate.)

Given that 10% of the packets are 100 bits long and the rest are 1000 bits long, the mean service time $E[S]$ (where S denotes the service time random variable)

$$
\begin{equation*}
E[S]=0.1 * 0.002+0.9 * 0.02=0.0182 s \tag{24}
\end{equation*}
$$

and the second moment of the service time is

$$
\begin{equation*}
E\left[S^{2}\right]=0.1 * 0.002^{2}+0.9 * 0.02^{2}=3.6040 \times 10^{-4} s^{2} \tag{25}
\end{equation*}
$$

The mean waiting time W, according to the $\mathrm{P}-\mathrm{K}$ formula, which applies to $\mathrm{M} / \mathrm{G} / 1$ queueing system, is

$$
\begin{equation*}
W=\frac{\lambda E\left[S^{2}\right]}{2(1-\lambda E[S])}=8.3 \mathrm{~ms} \tag{26}
\end{equation*}
$$

By Little's Law, the mean queue length is given by the product of the throughout of the queue and the mean waiting time,

$$
\begin{equation*}
\lambda * W=0.21 \text { packets } \tag{27}
\end{equation*}
$$

