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Branching Algorithm

Branching Algorithm

Selection: Select a local configuration of the problem instance

Recursion: Recursively solve subinstances

Combination: Compute a solution of the instance based on the solutions of
the subinstances

Halting rule: 0 recursive calls

Simplification rule: 1 recursive call

Branching rule: ≥ 2 recursive calls

S. Gaspers (UNSW) Branching Semester 2, 2018 4 / 27



Example: Our first Vertex Cover algorithm

Algorithm vc1(G, k);

1 if E = ∅ then // all edges are covered

2 return Yes

3 else if k ≤ 0 then // we cannot select any vertex

4 return No

5 else
6 Select an edge uv ∈ E;
7 return vc1(G− u, k − 1) ∨ vc1(G− v, k − 1)
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Search trees

Recall: A search tree models the recursive calls of an algorithm.
For a b-way branching where the parameter k decreases by a at each recursive
call, the number of nodes is at most bk/a · (k/a+ 1).

k

k − a

k − 2a k − 2a

k − a

k − 2a k − 2a
...

≤ k/a+ 1

≤ bk/a

If k/a and b are upper bounded by a function of k, and the time spent at each
node is FPT (typically, polynomial), then we get an FPT running time.
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Feedback Vertex Set

A feedback vertex set of a multigraph G = (V,E) is a set of vertices S ⊆ V such
that G− S is acyclic.

Feedback Vertex Set
Input: Multigraph G = (V,E), integer k
Parameter: k
Question: Does G have a feedback vertex set of size at most k?
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Simplification Rules

We apply the first applicable1 simplification rule.

(Loop)

If G has a loop vv ∈ E, then set G← G− v and k ← k − 1.

(Multiedge)

If E contains an edge uv more than twice, remove all but two copies of uv.

(Degree-1)

If ∃v ∈ V with dG(v) ≤ 1, then set G← G− v.

(Budget-exceeded)

If k < 0, then return No.

1A simplification rule is applicable if it modifies the instance.
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Simplification Rules II

(Degree-2)

If ∃v ∈ V with dG(v) = 2, then denote NG(v) = {u,w} and set
G← G′ = (V \ {v}, (E \ {vu, vw}) ∪ {uw}).

Lemma 1

(Degree-2) is sound.

Proof.
Suppose S is a feedback vertex set of G of size at most k. Let

S′ =

{
S if v /∈ S
(S \ {v}) ∪ {u} if v ∈ S.

Now, |S′| ≤ k and S′ is a feedback vertex set of G′ since every cycle in G′ corresponds
to a cycle in G, with, possibly, the edge uw replaced by the path (u, v, w).

Suppose S′ is a feedback vertex set of G′ of size at most k. Then, S′ is also a feedback
vertex set of G.
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Remaining issues

A select–discard branching decreases k in only one branch

One could branch on all the vertices of a cycle, but the length of a shortest
cycle might not be bounded by any function of k

Idea:

An acyclic graph has average degree < 2

After applying simplification rules, G has average degree ≥ 3

The selected feeback vertex set needs to be incident to many edges

Does a feedback vertex set of size at most k contain at least one vertex
among the f(k) vertices of highest degree?
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The fvs needs to be incident to many edges

Lemma 2

If S is a feedback vertex set of G = (V,E), then∑
v∈S

(dG(v)− 1) ≥ |E| − |V |+ 1

Proof.

Since F = G− S is acyclic, |E(F )| ≤ |V | − |S| − 1.
Since every edge in E \ E(F ) is incident with a vertex of S, we have

|E| = |E| − |E(F )|+ |E(F )|

≤

(∑
v∈S

dG(v)

)
+ (|V | − |S| − 1)

=

(∑
v∈S

(dG(v)− 1)

)
+ |V | − 1.
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The fvs needs to contain a high-degree vertex

Lemma 3
Let G be a graph with minimum degree at least 3 and let H denote a set of 3k
vertices of highest degree in G.
Every feedback vertex set of G of size at most k contains at least one vertex of H.

Proof.
Suppose not. Let S be a feedback vertex set with |S| ≤ k and S ∩H = ∅. Then,

2|E| − |V | =
∑
v∈V

(dG(v)− 1)

=
∑
v∈H

(dG(v)− 1) +
∑

v∈V \H

(dG(v)− 1)

≥ 3 · (
∑
v∈S

(dG(v)− 1)) +
∑
v∈S

(dG(v)− 1)

≥ 4 · (|E| − |V |+ 1)

⇔ 3|V | ≥ 2|E|+ 4.

But this contradicts the fact that every vertex of G has degree at least 3.
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Algorithm for Feedback Vertex Set

Theorem 4

Feedback Vertex Set can be solved in O∗((3k)k) time.

Proof (sketch).

Exhaustively apply the simplification rules.

The branching rule computes H of size 3k, and branches into subproblems
(G− v, k − 1) for each v ∈ H.

Current best:
O∗(3.591k) deterministic [Kociumaka, Pilipczuk, 2014],
O∗(3k) time randomized [Cygan et al., 2011]
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Maximum Leaf Spanning Tree

A leaf of a tree is a vertex with degree 1. A spanning tree in a graph G = (V,E)
is a subgraph of G that is a tree and has |V | vertices.

Maximum Leaf Spanning Tree
Input: connected graph G, integer k
Parameter: k
Question: Does G have a spanning tree with at least k leaves?
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Property

A k-leaf tree in G is a subgraph of G that is a tree with at least k leaves.
A k-leaf spanning tree in G is a spanning tree in G with at least k leaves.

Lemma 5

Let G = (V,E) be a connected graph.
G has a k-leaf tree ⇔ G has a k-leaf spanning tree.

Proof.

(⇐): trivial
(⇒): Let T be a k-leaf tree in G. By induction on x := |V | − |V (T )|, we will
show that T can be extended to a k-leaf spanning tree in G.
Base case: x = 0 X.
Induction: x > 0, and assume the claim is true for all x′ < x. Choose uv ∈ E
such that u ∈ V (T ) and v /∈ V (T ). Since T ′ := (V (T ) ∪ {v}, E(T ) ∪ {uv}) has
≥ k leaves and < x external vertices, it can be extended to a k-leaf spanning tree
in G by the induction hypothesis.
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Strategy

The branching algorithm will check whether G has a k-leaf tree.

A tree with ≥ 3 vertices has at least one internal (= non-leaf) vertex.

“Guess” an internal vertex r, i.e., do a |V |-way branching fixing an initial
internal vertex r.

In any branch, the algorithm has computed

T – a tree in G
I – the internal vertices of T , with r ∈ I
B – a subset of the leaves of T where T may be extended: the boundary set
L – the remaining leaves of T
X – the external vertices V \ V (T )

The question is whether T can be extended to a k-leaf tree where all the
vertices in L are leaves.
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Simplification Rules

Apply the first applicable simplification rule:

(Halt-Yes)

If |L|+ |B| ≥ k, then return Yes.

(Halt-No)

If |B| = 0, then return No.

(Non-extendable)

If ∃v ∈ B with NG(v) ∩X = ∅, then move v to L.
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Branching Lemma

Lemma 6 (Branching Lemma)

Suppose u ∈ B and there exists a k-leaf tree T ′ extending T where u is an
internal vertex.
Then, there exists a k-leaf tree T ′′ extending
(V (T ) ∪NG(u), E(T ) ∪ {uv : v ∈ NG(u) ∩X}).

Proof.

Start from T ′′ ← T ′ and perform the following operation for each v ∈ NG(u)∩X.
If v /∈ V (T ′), then add he vertex v and the edge uv.
Otherwise, add the edge uv, creating a cycle C in T and remove the other edge of
C incident to v. This does not decrease the number of leaves, since it only
increases the number of edges incident to u, and u was already internal.
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Follow Path Lemma

Lemma 7 (Follow Path Lemma)

Suppose u ∈ B and |NG(u) ∩X| = 1. Let NG(u) ∩X = {v}.
If there exists a k-leaf tree extending T where u is internal, but no k-leaf tree
extending T where u is a leaf, then there exists a k-leaf tree extending T where
both u and v are internal.

Proof.

Suppose not, and let T ′ be a k-leaf tree extending T where u is internal and v is a
leaf. But then, T − v is a k-leaf tree as well.
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Algorithm

Apply simplification rules

Select u ∈ B. Branch into

u ∈ L
u ∈ I. In this case, add X ∩NG(u) to B (Branching Lemma). In the special
case where |X ∩NG(u)| = 1, denote {v} = X ∩NG(u), make v internal, and
add NG(v) ∩X to B, continuing the same way until reaching a vertex with at
least 2 neighbors in X (Follow Path Lemma).

In one branch, a vertex moves from B to L; in the other branch, |B|
increases by at least 1.
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Running time analysis

Measure µ := 2k − 2|L| − |B| ≥ 0.

Branch where u ∈ L:

|B| decreases by 1, |L| increases by 1
µ decreases by 1

Branch where u ∈ I.

u moves from B to I
≥ 2 vertices move from X to B
µ decreases by at least 1

Binary search tree

Height ≤ µ ≤ 2k
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Result for Maximum Leaf Spanning Tree

Theorem 8 ([Kneis, Langer, Rossmanith, 2011])

Maximum Leaf Spanning Tree can be solved in O∗(4k) time.

Current best: O(3.188k) [Zehavi, 2018]
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Further Reading

Chapter 3, Bounded Search Trees in
Marek Cygan, Fedor V. Fomin,  Lukasz Kowalik, Daniel Lokshtanov, Dániel
Marx, Marcin Pilipczuk, Micha lPilipczuk, and Saket Saurabh. Parameterized
Algorithms. Springer, 2015.

Chapter 3, Bounded Search Trees in
Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized
Complexity. Springer, 2013.

Chapter 8, Depth-Bounded Search Trees in
Rolf Niedermeier. Invitation to Fixed Parameter Algorithms. Oxford
University Press, 2006.
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