
Tactile Sensing



Building a Tactile Sensor



Human Receptors

•  Two major layers 

•  Two main types 

•  Fast Adapting: Pacinian and Meissner 
corpuscles 

•  Slow Adapting: Merkel disk, Ruffini organ



Artificial Finger
 Randomly placed sensors 

 Strain Gauges 
 Polyvinylidene Fluoride 

 Two Layers

Soft inner layer 
(Dermis)

Hard outer core 
(Epidermis)

Hard Back 
(Bone)



Designed In-house



Distinguishing Natural 
Textures

• Natural Surfaces 

• Classify based on frequency 
components 

• Accuracy of 95±4%



Experimental Setup



Training
• Multidimensional time-series data 

• Pre-processed to generate attributes for 
machine learning 

• Use Weka implementation of decision trees 
with naive Bayes classifier in leaf nodes



Typical Frequency Response
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Sample Classifier Output

 PVDF Fourier components 
 Strain Gauge average



Texture Classification Results
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Slip Prediction

• Perform time-
domain analysis to 
predict slip 

• Seven objects 

• Predict slip at 
least 100ms 
before it happens 
with 96% 
accuracy
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Figure 5.2: Overview of the learning method.

learning algorithm to the “curse of dimensionality”. We deal with this by dividing

the problem into two stages: dimensionality reduction using clustering and temporal

pattern extraction.

Figure 5.2 shows an overview of the learning method. The data are preprocessed

before any analysis is performed. The clustering method used in this thesis assumes

that all of the variables are independent [125]. Hence, in the first stage of training,

the data are projected onto a new basis using principal component analysis (PCA),

which will be described in Section 5.2.2. The model, that is, the principal component

coe�cients from the training data are saved and later used to transform the test

data into the new coordinate system. Clustering is performed on the output of

the PCA. Clustering serves two purposes. First, the aim of clustering is to find

intrinsic structure within the data. Second, it reduces the high dimensional time-



Preprocessing
Sequences are labelled using high resolution linear variable 

differential transformer (LVDT), which is a linear distance 
sensor.

0.5 0.8 1.0 1.5 2.0−150

−100

−50

0

D
is

ta
nc

e
(µ

m
)

Time (s)

 

 

Stationary-contact
Pre-slip
Slip
LVDT Data



Dimensionality Reduction
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  PVDF
  Strain Gauge
  Cluster A
  Cluster B
  Cluster C
  Cluster D

Build Gaussian mixture models 
using minimum message length as 

the optimisation criterion
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Voriginal = {BCCDDCAAAABAABBBB. . . }
Vlabelled =

�
(B, T )(C, T )(C, T )(D, T )(D, T )(C, P )(A,P )(A,P )(A,P )(A,P )(B, S)

(A, S)(A, S)(B, S)(B, S)(B, S)(B, S) . . .
⇥

(a) Example of a feature vector.

T P S

BA C D

(b) Three state hidden Markov model.

Figure 5.6: A feature vector and a hidden Markov model. The letters A,B,C and
D indicate membership to a particular cluster. The letters T, P and S represent
contact states: stationary, pre-slip and slip, respectively.

called the transition probabilities. In a particular state, an observation is generated

according to a probability distribution, called the emission probabilities. Given an

HMM model of a system and a sequence of observations, it is possible to predict the

corresponding sequence of states for the system. More formally, an HMM is defined

by [128]:

• N, the number of states in the model. The individual states are denoted by

S = {S1, S2, . . . , SN}, and the state at time t by qt.

• M, the number of distinct observation symbols. The individual symbols are

denoted by V = {v1, v2, . . . , vM}.

• The state transition probabilities, A = {aij}, where

aij = P [qt+1 = Sj|qt = Si], 1 � i, j � N.
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called the transition probabilities. In a particular state, an observation is generated

according to a probability distribution, called the emission probabilities. Given an

HMM model of a system and a sequence of observations, it is possible to predict the

corresponding sequence of states for the system. More formally, an HMM is defined

by [128]:

• N, the number of states in the model. The individual states are denoted by

S = {S1, S2, . . . , SN}, and the state at time t by qt.

• M, the number of distinct observation symbols. The individual symbols are

denoted by V = {v1, v2, . . . , vM}.

• The state transition probabilities, A = {aij}, where

aij = P [qt+1 = Sj|qt = Si], 1 � i, j � N.

A,B,C and D: membership of a particular cluster 



Experimental Setup


