COMP2111 Week 11 Term 1, 2019 Q & A

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Administrivia

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● □ ● ○○○

- Assignment 3 due today, 23:59. Solution next week.
- Assignment 2 marks released soon
- Problem set solutions released later this week

Post-course consultations (Me):

- Room 204, K17
- Today 12:00-1:00
- Monday, May 6: 11:00-4:00

・ロト ・回ト ・ヨト ・ヨト … ヨ

- Hoare Logic
- 2 CFGs / Myhill-Nerode
- Transition systems
- Natural Deduction (Predicate Logic)
- OFAs/NFAs/Regular languages

3

・ロト ・回ト ・ヨト ・ヨト … ヨ

Hoare Logic

- 2 CFGs / Myhill-Nerode
- Transition systems
- Natural Deduction (Predicate Logic)
- OFAs/NFAs/Regular languages

Hoare Logic

include proof obligations.

Hoare Logic solution

Problem 8 solution

Post
$$q = n \operatorname{div} 3 \wedge r = n \operatorname{mod} 3$$

C $(n = 3q + r) \wedge (r \ge 0)$
G $(n = 3q + r) \wedge (r \ge 0)$
D $(n = 3q + r) \wedge (r \ge 0) \wedge (r \ge 3)$
H $(n = 3q + r) \wedge (r \ge 0) \wedge (r < 3)$
F $(n = 3q + (r - 3)) \wedge ((r - 3) \ge 0)$
E $(n = 3(q + 1) + (r - 3)) \wedge ((r - 3 \ge 0))$
B $(n = 3q + n) \wedge (n \ge 0)$
A $(n = 3.0 + n) \wedge (n \ge 0)$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

・ロト ・回ト ・ヨト ・ヨト … ヨ

- Hoare Logic
- 2 CFGs / Myhill-Nerode
- Transition systems
- Natural Deduction (Predicate Logic)
- OFAs/NFAs/Regular languages

CFGs / Myhill-Nerode

Problem 11

Consider the language

 $L = \{ w \in \{0,1\}^* : w \text{ has more 0's than 1's} \}.$

(a) Give a context-free grammar that generates L

(b) Use the Myhill-Nerode theorem to show that L is not regular.

CFGs / Myhill-Nerode solution

Problem 11 solution

(a) *L* is generated by the grammar $(\{W, Z, S\}, \{0, 1\}, \mathcal{R}, S)$ where \mathcal{R} is the ruleset:

 $\begin{array}{rcl} S & \rightarrow & WZS \mid WZW \\ W & \rightarrow & WW \mid 0W1 \mid 1W0 \mid \epsilon \\ Z & \rightarrow & 0Z \mid 0 \end{array}$

(b) Let $w_i = 0^i$ for $i \ge 1$. We will show that if $i \ne j$ then $w_i \ne_L w_j$. Assume, without loss of generality that i < j. Then for $z = 1^i$ we have $w_i z \notin L$ but $w_j z \in L$ so $w_i \ne_L w_j$. Therefore L has infinite index, so by the Myhill-Nerode theorem it is not regular.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● □ ● ○○○

- Hoare Logic
- 2 CFGs / Myhill-Nerode
- Transition systems
- Natural Deduction (Predicate Logic)
- OFAs/NFAs/Regular languages

Transition systems

Problem 9

A knight can make one of eight possible moves: from (x, y) it can move to any of:

(i)
$$(x + 2, y + 1)$$

(ii) $(x + 2, y - 1)$
(iii) $(x + 1, y + 2)$
(iv) $(x + 1, y - 2)$
(v) $(x - 1, y - 2)$
(vi) $(x - 1, y + 2)$
(vii) $(x - 2, y - 1)$
viii) $(x - 2, y + 1)$

Transition systems

Problem 9

(a) Model this process as a state transition system, defining the states and transition relation.

Problem 9(a) solution States: $\mathbb{Z} \times \mathbb{Z}$ **Transition:** A transition from (x, y) to each of: (i) (x+2, y+1)(ii) (x+2, y-1)(iii) (x+1, y+2)(iv) (x+1, y-2)(v) (x-1, y-2)(vi) (x-1, y+2)(vii) (x-2, y-1)(viii) (x-2, y+1)

Transition systems

Problem 9

- (b) Prove that from (0,0) the knight is able to reach any location (x, y) in a finite number of moves.
- (c) Based on your previous answer, give an upper bound for the number of moves it takes the knight to reach (x, y) from (0,0)

・ロト ・回ト ・ヨト ・ヨト … ヨ

Problem 9(b)&(c) solutions

Given these compound moves, it is straightforward to see how the knight can reach any square from (x, y) with a suitable combination of N, S, E, W moves.

Move from (0,0) to (x, y) takes at most 3(x + y) moves

Transition systems

Problem 9

- (d) The *kih* is restricted to moves (i), (iii), (v) and (vii). Find an invariant for the set of states reachable from (0,0) by a kih; and show that (1,0) is not reachable from (0,0).
- (e) The *ngt* is restricted to moves (ii), (iv), (vi) and (viii). Show that a ngt cannot reach (1,0) from (0,0).

(日) (同) (目) (日) (日) (日)

Problem 9(d)&(e) solutions

(d) • Consider: "
$$x + y \pmod{3} = 0$$
".

- It holds at (0,0)
- If $(x, y) \xrightarrow{kih} (x', y')$ then $x' + y' = x + y \pm 3$.
- So it is a preserved invariant of the states reachable from (0,0).
- At (1,0): $1+0 \neq 0 \pmod{3}$, it follows that (1,0) is not reachable from (0,0) by a kih.

(e) • Consider: "
$$x - y \pmod{3} = 0$$
".

- It holds at (0,0)
- If $(x, y) \xrightarrow{ngt} (x', y')$ then $x' y' = x y \pm 3$.
- So it is a preserved invariant of the states reachable from (0,0).
- At (1,0): $1-0 \neq 0 \pmod{3}$, it follows that (1,0) is not reachable from (0,0) by a ngt.

Transition systems

Problem 9

(f) The *kni* is restricted to moves (i), (ii), (iii) and (iv). Show that a kni cannot reach (1,0) from (0,0).

Problem 9(d)&(e) solutions					
Keep track of moves made:					
States:	$\mathbb{N} imes \mathbb{Z} imes \mathbb{Z}$				
Transition:	A transition from (n, x, y) to each of:				
	(i) $(n+1, x+2, y+1)$				
	(ii) $(n+1, x+2, y-1)$				
	(iii) $(n+1, x+1, y+2)$				
	(iv) $(n+1, x+1, y-2)$				
Invariant:	At (n, x, y) : $x \ge n$				

Problem 9(d)&(e) solutions				
Keep track of moves made:				
States:	$\mathbb{N} \times \mathbb{Z} \times \mathbb{Z}$			
Transition:	A transition from (n, x, y) to each of:			
	(i) $(n+1, x+2, y+1)$			
	(ii) $(n+1, x+2, y-1)$			
	(iii) $(n+1, x+1, y+2)$			
	(iv) $(n+1, x+1, y-2)$			
Invariant:	At (n, x, y) : $x \ge n$			
	Check all reachable positions in 0 or 1 moves.			

(日) (同) (目) (日) (日) (日)

- Hoare Logic
- 2 CFGs / Myhill-Nerode
- Transition systems
- Natural Deduction (Predicate Logic)
- OFAs/NFAs/Regular languages

Recall:

Problems 2 and 5:

2(a) Suppose $X \cap Y^c = \emptyset$ and $Y \cap Z = \emptyset$. Show:

 $X \cap Z = \emptyset$

2(b) Suppose $X \cap Y = \emptyset$. Show that for all Z: $(Z \cap X^c) \cap (Z \cap Y) = (Z \cap Y)$

- **5(a)** If all apples are fruit and no fruit are vegetables, then no apples are vegetables.
- **5(b)** If no bananas are apples and pink-lady is an apple, then pink-lady is not a banana.

Natural Deduction

Problem 7:

Show

24

(a) $\vdash \forall x (A(x) \to F(x)) \land \neg \exists x (F(x) \land V(x)) \to \neg \exists x (A(x) \land V(x))$ (b) $\vdash \neg \exists x (B(x) \land A(x)) \land A(p) \to \neg B(p)$

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つへで

Natural Deduction solutions

Problem 7(a) solution:

Line	Premises	Formula	Rule	Ref.
1		$\varphi_1 \wedge \varphi_2$	Premise	
2	1	$\varphi_1: \forall x (A(x) \rightarrow F(x))$	∧-E1	1
3	1	$\varphi_2: \neg \exists x (F(x) \land V(x))$	∧-E2	1
4		$\exists x (A(x) \land V(x))$	Premise	
5		$A(c) \wedge V(c)$	Premise	
6	5	A(c)	∧-E1	5
7	1	A(c) ightarrow F(c)	∀-E	2
8	1,5	F(c)	→-E	6,7
9	5	V(c)	∧-E2	5
10	1,5	$F(c) \wedge V(c)$	∧-I	8,9
11	1,5	$\exists x(F(x) \land V(x))$	3-I	10
12	1,5		¬-E	3,11
13	1,4	\perp	∃-E	4,12
14	1	$ eg \exists x (A(x) \land V(x))$	¬-I	12
15		$\varphi_1 \land \varphi_2 \to \neg \exists x (A(x) \land V(x))$	→-I	13

Natural Deduction solutions

Problem 7(b) solution: $\begin{bmatrix} 1. \ \neg \exists x (B(x) \land A(x)) \land A(p) \\ \hline 2. \ \neg \exists x (B(x) \land A(x)) \end{bmatrix}$ ∧-E1: 1 3. A(p) ∧-F2: 1 4. B(p) 5. $B(p) \wedge A(p)$ ∧-I: 3,4 6. $\exists x (B(x) \land A(x))$ $\exists -1:5$ 7. ⊥ ¬-E: 2.6 8. ¬B(p) 9. $\neg \exists x (B(x) \land A(x)) \land A(p) \rightarrow \neg B(p)$ \rightarrow -I: 1-8

(日) (同) (目) (日) (日) (日)

- Hoare Logic
- 2 CFGs / Myhill-Nerode
- Transition systems
- Natural Deduction (Predicate Logic)
- OFAs/NFAs/Regular languages

DFAs/NFAs/Regular languages

Problem 10:

Give DFAs that accepts the following languages over Σ = {a, b}:
(a) L₁ = {λ} ∪ {w : w starts and ends with the same symbol}
(b) L₂ = {a, aa, bb, aba, bab, bba}
(c) L₃ = {w : w has an even number of a's and an odd number of b's}
(d) L₁ ∩ L₃

Conclusion

Any other questions?

