COMP2111 Week 11
Term 1, 2019
Q & A
Assignment 3 due today, 23:59. Solution next week.
Assignment 2 marks released soon
Problem set solutions released later this week

Post-course consultations (Me):
Room 204, K17
Today 12:00-1:00
Monday, May 6: 11:00-4:00
Topics covered today

1. Hoare Logic
2. CFGs / Myhill-Nerode
3. Transition systems
4. Natural Deduction (Predicate Logic)
5. DFAs/NFAs/Regular languages
Topics covered today

1. Hoare Logic
2. CFGs / Myhill-Nerode
3. Transition systems
4. Natural Deduction (Predicate Logic)
5. DFAs/NFAs/Regular languages
Problem 8

\[
\begin{align*}
\{ n \geq 0 \} & \quad \{ A \} \\
q & := 0; & \quad \{ B \} \\
r & := n; & \quad \{ C \} \\
{\textbf{while} \ r \geq 3 \ {\textbf{do}}} & \quad \{ D \} \\
& \quad \{ E \} \\
q & := q + 1; & \quad \{ F \} \\
r & := r - 3 & \quad \{ G \} \\
{\textbf{od}} & \quad \{ H \} \\
\end{align*}
\]

(a) Find Post, relating \(q \), \(r \), and \(n \).

(b) Complete the annotated proof by finding suitable assertions for \(A-H \); include proof obligations.
Problem 8 solution

Post \[q = n \text{ div } 3 \land r = n \text{ mod } 3 \]

\[C \quad (n = 3q + r) \land (r \geq 0) \]

\[G \quad (n = 3q + r) \land (r \geq 0) \]

\[D \quad (n = 3q + r) \land (r \geq 0) \land (r \geq 3) \]

\[H \quad (n = 3q + r) \land (r \geq 0) \land (r < 3) \]

\[F \quad (n = 3q + (r - 3)) \land ((r - 3) \geq 0) \]

\[E \quad (n = 3(q + 1) + (r - 3)) \land ((r - 3) \geq 0) \]

\[B \quad (n = 3q + n) \land (n \geq 0) \]

\[A \quad (n = 3.0 + n) \land (n \geq 0) \]
Topics covered today

1. Hoare Logic
2. CFGs / Myhill-Nerode
3. Transition systems
4. Natural Deduction (Predicate Logic)
5. DFAs/NFAs/Regular languages
Problem 11
Consider the language
\[L = \{ w \in \{0, 1\}^* : w \text{ has more 0's than 1's} \}. \]
(a) Give a context-free grammar that generates \(L \)
(b) Use the Myhill-Nerode theorem to show that \(L \) is not regular.
Problem 11 solution

(a) L is generated by the grammar $(\{W, Z, S\}, \{0, 1\}, R, S)$ where R is the ruleset:

$$
S \rightarrow WZS \mid WZW \\
W \rightarrow WW \mid 0W1 \mid 1W0 \mid \epsilon \\
Z \rightarrow 0Z \mid 0
$$

(b) Let $w_i = 0^i$ for $i \geq 1$. We will show that if $i \neq j$ then $w_i \not\equiv_L w_j$. Assume, without loss of generality that $i < j$. Then for $z = 1^i$ we have $w_i z \not\in L$ but $w_j z \in L$ so $w_i \not\equiv_L w_j$. Therefore L has infinite index, so by the Myhill-Nerode theorem it is not regular.
Topics covered today

1. Hoare Logic
2. CFGs / Myhill-Nerode
3. Transition systems
4. Natural Deduction (Predicate Logic)
5. DFAs/NFAs/Regular languages
Problem 9

A knight can make one of eight possible moves: from \((x, y)\) it can move to any of:

(i) \((x + 2, y + 1)\)
(ii) \((x + 2, y - 1)\)
(iii) \((x + 1, y + 2)\)
(iv) \((x + 1, y - 2)\)
(v) \((x - 1, y - 2)\)
(vi) \((x - 1, y + 2)\)
(vii) \((x - 2, y - 1)\)
(viii) \((x - 2, y + 1)\)
Problem 9
(a) Model this process as a state transition system, defining the states and transition relation.
Transition systems solution

Problem 9(a) solution

States: \(\mathbb{Z} \times \mathbb{Z} \)

Transition: A transition from \((x, y)\) to each of:

(i) \((x + 2, y + 1)\)
(ii) \((x + 2, y - 1)\)
(iii) \((x + 1, y + 2)\)
(iv) \((x + 1, y - 2)\)
(v) \((x - 1, y - 2)\)
(vi) \((x - 1, y + 2)\)
(vii) \((x - 2, y - 1)\)
(viii) \((x - 2, y + 1)\)
Problem 9

(b) Prove that from (0, 0) the knight is able to reach any location (x, y) in a finite number of moves.

(c) Based on your previous answer, give an upper bound for the number of moves it takes the knight to reach (x, y) from (0, 0).
Transition systems solution

Problem 9(b)&(c) solutions

<table>
<thead>
<tr>
<th>Move</th>
<th>Transition</th>
<th>Source</th>
<th>Destination</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x, y)</td>
<td>(iii)</td>
<td>(x + 1, y + 2)</td>
<td>(x + 1, y)</td>
</tr>
<tr>
<td>(x, y)</td>
<td>(vi)</td>
<td>(x − 1, y + 2)</td>
<td>(x − 1, y)</td>
</tr>
<tr>
<td>(x, y)</td>
<td>(i)</td>
<td>(x + 2, y + 1)</td>
<td>(x, y + 1)</td>
</tr>
<tr>
<td>(x, y)</td>
<td>(ii)</td>
<td>(x + 2, y − 1)</td>
<td>(x, y − 1)</td>
</tr>
<tr>
<td>(x, y)</td>
<td>(vii)</td>
<td>(x − 1, y + 1)</td>
<td>(x + 1, y + 1)</td>
</tr>
<tr>
<td>(x, y)</td>
<td>(ii)</td>
<td>(x + 1, y + 1)</td>
<td>(x + 1, y)</td>
</tr>
<tr>
<td>(x, y)</td>
<td>(vii)</td>
<td>(x − 1, y)</td>
<td>(x + 1, y + 1)</td>
</tr>
<tr>
<td>(x, y)</td>
<td>(vi)</td>
<td>(x, y + 1)</td>
<td>(x, y − 1)</td>
</tr>
</tbody>
</table>

Given these compound moves, it is straightforward to see how the knight can reach any square from (x, y) with a suitable combination of \(N, S, E, W\) moves.

Move from (0, 0) to (x, y) takes at most \(3(x + y)\) moves.
Problem 9

(d) The kih is restricted to moves (i), (iii), (v) and (vii). Find an invariant for the set of states reachable from $(0, 0)$ by a kih; and show that $(1, 0)$ is not reachable from $(0, 0)$.

(e) The ngt is restricted to moves (ii), (iv), (vi) and (viii). Show that a ngt cannot reach $(1, 0)$ from $(0, 0)$.
Problem 9(d)&(e) solutions

(d) • Consider: “$x + y \pmod{3} = 0$”.
 • It holds at $(0, 0)$
 - If $(x, y) \xrightarrow{k_{ih}} (x', y')$ then $x' + y' = x + y \pm 3$.
 - So it is a preserved invariant of the states reachable from $(0, 0)$.
 • At $(1, 0)$: $1 + 0 \neq 0 \pmod{3}$, it follows that $(1, 0)$ is not reachable from $(0, 0)$ by a k_{ih}.

(e) • Consider: “$x - y \pmod{3} = 0$”.
 • It holds at $(0, 0)$
 - If $(x, y) \xrightarrow{n_{gt}} (x', y')$ then $x' - y' = x - y \pm 3$.
 - So it is a preserved invariant of the states reachable from $(0, 0)$.
 • At $(1, 0)$: $1 - 0 \neq 0 \pmod{3}$, it follows that $(1, 0)$ is not reachable from $(0, 0)$ by a n_{gt}.
Problem 9

(f) The *kni* is restricted to moves (i), (ii), (iii) and (iv). Show that a kni cannot reach \((1, 0)\) from \((0, 0)\).
Problem 9(d)&(e) solutions

Keep track of moves made:

States: \(\mathbb{N} \times \mathbb{Z} \times \mathbb{Z} \)

Transition: A transition from \((n, x, y)\) to each of:

(i) \((n + 1, x + 2, y + 1)\)
(ii) \((n + 1, x + 2, y - 1)\)
(iii) \((n + 1, x + 1, y + 2)\)
(iv) \((n + 1, x + 1, y - 2)\)

Invariant: At \((n, x, y)\): \(x \geq n\)

Check all reachable positions in 0 or 1 moves.
Problem 9(d) & (e) solutions

Keep track of moves made:

States: \(\mathbb{N} \times \mathbb{Z} \times \mathbb{Z} \)

Transition: A transition from \((n, x, y)\) to each of:

(i) \((n + 1, x + 2, y + 1)\)
(ii) \((n + 1, x + 2, y - 1)\)
(iii) \((n + 1, x + 1, y + 2)\)
(iv) \((n + 1, x + 1, y - 2)\)

Invariant: At \((n, x, y)\): \(x \geq n \)

Check all reachable positions in 0 or 1 moves.
Problem 9(d) & (e) solutions

Keep track of moves made:

States: \(\mathbb{N} \times \mathbb{Z} \times \mathbb{Z} \)

Transition: A transition from \((n, x, y)\) to each of:

(i) \((n + 1, x + 2, y + 1)\)

(ii) \((n + 1, x + 2, y - 1)\)

(iii) \((n + 1, x + 1, y + 2)\)

(iv) \((n + 1, x + 1, y - 2)\)

Invariant: At \((n, x, y)\): \(x \geq n\)

Check all reachable positions in 0 or 1 moves.
Topics covered today

1. Hoare Logic
2. CFGs / Myhill-Nerode
3. Transition systems
4. Natural Deduction (Predicate Logic)
5. DFAs/NFAs/Regular languages
Recall:

Problems 2 and 5:

2(a) Suppose $X \cap Y^c = \emptyset$ and $Y \cap Z = \emptyset$. Show:

$$X \cap Z = \emptyset$$

2(b) Suppose $X \cap Y = \emptyset$. Show that for all Z:

$$(Z \cap X^c) \cap (Z \cap Y) = (Z \cap Y)$$

5(a) If all apples are fruit and no fruit are vegetables, then no apples are vegetables.

5(b) If no bananas are apples and pink-lady is an apple, then pink-lady is not a banana.
Problem 7:

Show

(a) \(\vdash \forall x (A(x) \rightarrow F(x)) \land \neg \exists x (F(x) \land V(x)) \rightarrow \neg \exists x (A(x) \land V(x)) \)

(b) \(\vdash \neg \exists x (B(x) \land A(x)) \land A(p) \rightarrow \neg B(p) \)
Natural Deduction solutions

Problem 7(a) solution:

<table>
<thead>
<tr>
<th>Line</th>
<th>Premises</th>
<th>Formula</th>
<th>Rule</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>(\varphi_1 \land \varphi_2)</td>
<td>Premise</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>(\varphi_1 : \forall x (A(x) \rightarrow F(x)))</td>
<td>(\land)-E1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>(\varphi_2 : \neg \exists x (F(x) \land V(x)))</td>
<td>(\land)-E2</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>(\exists x (A(x) \land V(x)))</td>
<td>Premise</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>(A(c) \land V(c))</td>
<td>Premise</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>(A(c))</td>
<td>(\land)-E1</td>
<td>5</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>(A(c) \rightarrow F(c))</td>
<td>(\forall)-E</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>1,5</td>
<td>(F(c))</td>
<td>(\rightarrow)-E</td>
<td>6,7</td>
</tr>
<tr>
<td>9</td>
<td>5</td>
<td>(V(c))</td>
<td>(\land)-E2</td>
<td>5</td>
</tr>
<tr>
<td>10</td>
<td>1,5</td>
<td>(F(c) \land V(c))</td>
<td>(\land)-I</td>
<td>8,9</td>
</tr>
<tr>
<td>11</td>
<td>1,5</td>
<td>(\exists x (F(x) \land V(x)))</td>
<td>(\exists)-I</td>
<td>10</td>
</tr>
<tr>
<td>12</td>
<td>1,5</td>
<td>(\bot)</td>
<td>(\neg)-E</td>
<td>3,11</td>
</tr>
<tr>
<td>13</td>
<td>1,4</td>
<td>(\bot)</td>
<td>(\exists)-E</td>
<td>4,12</td>
</tr>
<tr>
<td>14</td>
<td>1</td>
<td>(\neg \exists x (A(x) \land V(x)))</td>
<td>(\neg)-I</td>
<td>12</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>(\varphi_1 \land \varphi_2 \rightarrow \neg \exists x (A(x) \land V(x)))</td>
<td>(\rightarrow)-I</td>
<td>13</td>
</tr>
</tbody>
</table>
Problem 7(b) solution:

1. \(\neg \exists x (B(x) \land A(x)) \land A(p) \)
2. \(\neg \exists x (B(x) \land A(x)) \)
3. \(A(p) \)
4. \(B(p) \)
5. \(B(p) \land A(p) \)
6. \(\exists x (B(x) \land A(x)) \)
7. \(\bot \)
8. \(\neg B(p) \)
9. \(\neg \exists x (B(x) \land A(x)) \land A(p) \rightarrow \neg B(p) \)
Topics covered today

1. Hoare Logic
2. CFGs / Myhill-Nerode
3. Transition systems
4. Natural Deduction (Predicate Logic)
5. DFAs/NFAs/Regular languages
Problem 10:

Give DFAs that accepts the following languages over $\Sigma = \{a, b\}$:

(a) $L_1 = \{\lambda\} \cup \{w : w \text{ starts and ends with the same symbol}\}$

(b) $L_2 = \{a, aa, bb, aba, bab, bba\}$

(c) $L_3 = \{w : w \text{ has an even number of } a\text{'s and an odd number of } b\text{'s}\}$

(d) $L_1 \cap L_3$
Conclusion

Any other questions?