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Lecture overview

 Analog output

 PWM

 Digital-to-Analog (D/A) Conversion

 Analog input

 Analog-to-Digital (A/D) Conversion
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PWM Analog Output

 PWM (Pulse Width Modulation) is a way of digitally 
encoding analog signal levels. 
 Through the use of high-resolution counters,  the duty cycle 

(pulse width/period) of a pulse wave is modulated to encode a 
specific analog signal level. 

 The PWM signal is still digital
 Its value is either full high or full low.

 Given a sufficient bandwidth, any analog value can be encoded 
with PWM. 

 PWM is a powerful technique for controlling analog 
circuits with a processor's digital outputs. 

 It is employed in a wide variety of applications
 E.g. motor speed control

3



PWM Analog Output (cont.)

 A low-pass filtered is required to smooth the 

input signal and eliminate the inherent noise 

components in PWM signal.

 The output voltage is directly proportional to 

the pulse width.

 By changing the pulse width of the PWM 

waveform, we can control the output value.
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Examples of PWM Signals
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PWM Generation In AVR

 PWM can be obtained through the provided 

timers.
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Recall: Timer0
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Configuration for PWM

 TCCR0A
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CTC 

 Clear Timer on Compare Match

9



Fast PWM
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Phase Correct PWM
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Example

 Generate a PWM waveform.
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Example (solution)

 Use Timer5

 Set OC5A as output

 Set the Timer5 operation mode as Phase Correct 

PWM mode

 Set the timer clock
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Example Code

14

.include "m2560def.inc"

.def temp = r16

ldi temp, 0b00001000
sts DDRL, temp ; Bit 3 will function as OC5A.

ldi temp, 0x4A ; the value controls the PWM duty cycle
sts OCR5AL, temp
clr temp
sts OCR5AH, temp

; Set the Timer5 to Phase Correct PWM mode. 
ldi temp, (1 << CS50)
sts TCCR5B, temp
ldi temp, (1<< WGM50)|(1<<COM5A1)
sts TCCR5A, temp

halt:
rjmp halt



Digital-to-Analog Conversion
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Digital-to-Analog Conversion 

(cont.)

 A parallel output interface connects the D/A to the CPU.

 The latches may be part of the D/A converter or the 

output interface.

 Digital value is converted into continuous value.

 A signal conditioning block may be used as a filter to 

smooth the quantized nature of the output.

 The signal conditioning block also provide isolation, buffering and 

voltage amplification if needed.
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Quantized D/A Output
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Binary-weighted D/A Converter

 As the switches for the bits are closed, a weighted 

current is supplied to the summing junction of the 

amplifier.

 For high-resolution D/A converters, the binary-

weighted type must have a wide range of 

resistors. This may lead to temperature stability 

and switching problems.
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R-2R Ladder D/A Converter

 As the switches for the grounded to the reference 

position, a binary-weighted current is supplied to 

the summing junction. 

 For high-resolution D/A converters, a wide range 

of resistors are not required. 
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D/A Converter Specifications

 Resolution and linearity.

 The resolution is determined by the number of bits 

and is given as the output voltage corresponding 

to the smallest digital step, i.e. 1 LSB.

 The linearity shows how closely the output voltage 

to the idea values (a straight line drawn through 

zero and full-scale). 

 Settling Time. 

 The time taken for the output voltage to settle to 

within a specified error band, usually  ½ LSB.
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D/A Converter Specifications 

(cont.)

 Glitches.

 A glitch is caused by asymmetrical switching in 

the D/A switches. If a switch changes from a one 

to a zero faster than from a zero to a one, a glitch 

may occur.

 Consider changing the output code of a 8-bit D/A from 

10000000 to 01111111 in the next slide.

 D/A converter glitch can be eliminated by using a 

sample-and-hold. 
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D/A Output Glitch
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Deglitched D/A 
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A/D Conversion
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Data Acquisition and 

Conversion

Procedure of data acquisition and conversion:

 A transducer converts physical values to electrical 
signals, either voltages or currents. 

 Signal conditioner performs the following tasks:
 Isolation and buffering: The input to the A/D may need to be 

protected from dangerous voltages such as static charges or 
reversed polarity voltages.

 Amplification: Rarely does the transducer produce the voltage or 
current needed by the A/D. The amplifier is designed so that the 
full-scale signal from the analog results in a full-scale signal to 
the A/D.

 Bandwidth limiting: The signal conditioning provides a low-pass 
filter to limit the range of frequencies that can be digitized.
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Data Acquisition and 

Conversion (Cont.)

 In applications where several analog inputs must be 

digitized, an analog multiplexer is followed the signal 

conditioning. It allows multiple analog inputs, each with 

its own signal conditioning for different transducers. 

 The sample-and-hold circuit samples the signal and 

holds it steady while the A/D converts it.

 The A/D converter converts the sampled signal to digital 

values.

 The three state gates hold the digital values generated 

by the A/D converter. 
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Data Acquisition System
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Shannon’s Sampling Theorem

Claude Shannon’s Theorem:

 When a signal, f(t) = X sin(2fsigt), is to be 

sampled (digitized), the minimum sampling 

frequency must be twice the signal 

frequency. 
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Sample Examples

 Sampled at twice of the signal frequency.
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Sample Examples

 Under-sampled, with sample frequency less 

than twice of the signal frequency 
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Shannon’s Sampling Theorem 

and Aliasing

 To preserve the full information in the signal, 

it is necessary to sample at twice the 

maximum frequency of the signal. This is 

known as the Nyquist rate.

 A signal can be exactly reproduced if it is 

sampled at a frequency F, where F is greater 

than or equal to the Nyquist rate.

 If the sampling frequency is less than Nyquist 

rate, the waveform is said to be under-

sampled. 31



Shannon’s Sampling Theorem 

and Aliasing (Cont.) 

 Undersampled signal, when converted back 

into a continuous time signal, will exhibit a 

phenomenon called aliasing.

 Aliasing is the presence of unwanted components 

in the reconstructed signal. These components 

were not present when the original signal was 

sampled.
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Successive Approximation 

Converter
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Successive Approximation A/D 

Converter

 Each bit in the successive approximation 
register is tested, starting at the most 
significant bit and working toward the least 
significant bit.

 As each bit is set, the output of the D/A 
converter is compared with the input.

 If the D/A output is lower than the input 
signal, the bit remains set and the next bit is 
tried.

 N times are required to set and test each bit 
in the successive approximation register. 34



Parallel A/D Converter
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Parallel A/D Converter 

 An array of 2N-1 comparators and produces 

an output code in the propagation time of the 

comparators and the output decoder.

 Fast but more costly in comparison to other 

designs.

 Also called flash A/D converter.
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Two-Stage Parallel A/D 

Converter
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Two-Stage Parallel A/D 

Converter

 The input signal is converted in two pieces.

 First, a coarse estimate is found by the first parallel A/D 

converter. This digital value is sent to the D/A and summer, 

where it is subtracted from original signal.

 The difference is converted by the second parallel converter and 

the result combined with the first A/D to give the digitized value.  

 It has nearly the performance of the parallel converter 

but without the complexity of 2N –1 comparators.

 It offers high resolution and high-speed conversion for 

applications like video signal processing.
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A/D Converter Specifications

 Conversion time 
 The time required to complete a conversion of the input signal.

 Establishes the upper signal frequency limit that can be sampled 
without aliasing.  

fMAX=1/(2*conversion time)                 (1)

 Resolution
 The number of bits in the converter gives the resolution and thus 

the smallest analog input signal for which the converter will 
produce a digital code.

 It may be given in terms of the full-scale input signal:

Resolution=full-scale signal/2n (2)

 It is often given as the number of bits, n; or stated as one part in 
2n.

 Sometimes it is given as a percent of maximum.
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A/D Converter Specifications 

(Cont.)

 Accuracy

 Relates to the smallest signal (or noise) to the measured signal.

 Given as a percent and describes how close the measurement is 

to the actual value.  

The signal is accurate to within 100% * VRESOLUTION/VSIGNAL (3)

 Linearity 

 The derivation in output codes from the real value (a straight line 

drawn through zero and full-scale). 

 The best that can be achieved is  ½ of the least significant bit 

( ½ LSB).
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A/D Converter Specifications 

(Cont.)

 Missing codes.

 A missing code could be caused by an internal 

error, especially by the D/A converter in a 

successive approximation converter.

 Aperture time. 

 The time that the A/D converter is “looking” at the 

input signal.

 It is usually equal to the conversion time.
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A/D Converter Specifications 

(Cont.)

42

00

01

10

11

00

01

10

11

 ½ LSB  ½ LSB

Output Code

Output Code

Missing 

Code

Input 

Voltage

Full-Scale Input 

Voltage

Full-Scale

A/D linearity                                  A/D missing codes



A/D Errors

 Three sources of errors in A/D conversion:

 Noise:

 All signals have noise.

 Need to reduce noise or choose the converter resolution 

appropriately to control the peak-to-peak noise. 

 Aliasing: 

 The errors due to aliasing is difficult to quantify.

 They depend on the relative amplitude of the signals at 

frequencies below and above the Nyquist frequency.

 The system design should include a low-pass filter to attenuate 

frequencies above the Nyquist frequency.
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A/D Errors (cont.)

 Aperture.

 A significant error in a digitizing system is due to signal variation 

during the aperture time. 

 A good design will attempt to have the uncertainty, V, be less 

than one least significant bit.

 A design equation for the aperture time, tAP, in terms of the 

maximum signal frequency, fMAX, and the number of bits in the 

A/D converter is 

tAP=1/(2  fMAX 2n)                 (4)

 The aperture time needed to reduce the error to is surprisingly 

short. 
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A/D Errors (Cont.)
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Reading Material

 Chapter 11: Analog Input and Output. 

Microcontrollers and Microcomputers by 

Fredrick M. Cady.

 Timers/Counters. AVR Mega2560 Data 

Sheet.

 PWM
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Homework
1. With the AVR lab board, connect PB7 to a 

LED and run the following code. What did 

you observe?
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.include "m2560def.inc"

.def temp=r16

ldi temp, 0b00001000
sts DDRL, temp ; Bit 3 will function as OC5A.

ldi temp, 0x4A ; the value controls the PWM duty cycle
sts OCR5AL, temp
clr temp
sts OCR5AH, temp

; Set the Timer5 to Phase Correct PWM mode. 
ldi temp, (1 << CS50)
sts TCCR5B, temp
ldi temp, (1<< WGM50)|(1<<COM5A1)
sts TCCR5A, temp



Homework

2. The A/D converter conversion time is 100 us. 

What is the maximum frequency that can be 

digitalized without aliasing occurring?

48



Homework

3. A transducer is to be used to find the 

temperature over a range of –100 to 100oC. 

We are required to read and display the 

temperature to a resolution of +/- 1oC. The 

transducer produces a voltage from –5 to +5 

volts over this temperature range with 5 

millivolts of noise. Specify the number of bits 

in the A/D converter (a) based on the 

dynamic range and (b) based on the required 

resolution.
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