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Randomized Algorithms

Turing machines do not inherently have access to randomness.

Assume algorithm has also access to a stream of random bits drawn
uniformly at random.

With r random bits, the probability space is the set of all 2r possible strings
of random bits (with uniform distribution).
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Las Vegas algorithms

Definition 1
A Las Vegas algorithm is a randomized algorithm whose output is always correct.

Randomness is used to upper bound the expected running time of the algorithm.

Example

Quicksort with random choice of pivot.
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Monte Carlo algorithms

Definition 2
A Monte Carlo algorithm is an algorithm whose output is incorrect with
probability at most p, 0 < p < 1.

A Monte Carlo has one sided error if its output is incorrect only on
Yes-instances or on No-instances, but not both.

A one-sided error Monte Carlo algorithm with false negatives answers No for
every No-instance, and answers Yes on Yes-instances with probability
p ∈ (0, 1). We say that p is the success probability of the algorithm.
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Algorithms with increased success probability

Boosting success probability

Suppose A is a one-sided Monte Carlo algorithm with false negatives with success
probability p. How can we use A to design a new one-sided Monte Carlo
algorithm with success probability p∗ > p?

Let t = − ln(1−p∗)
p and run the algorithm t times. Return Yes if at least one run

of the algorithm returned Yes, and No otherwise. Failure probability is

(1− p)t ≤ (e−p)t = e−p·t = eln(1−p
∗) = 1− p∗

via the inequality 1− x ≤ e−x.

Definition 3
A randomized algorithm is a one-sided Monte Carlo algorithm with constant
success probability.
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Amplification

Theorem 4

If a one-sided error Monte Carlo algorithm has success probability at least p, then
repeating it independently d 1pe times gives constant success probability.

In particular if we have a polynomial-time one-sided error Monte Carlo algorithm
with success probability p = 1

f(k) for some computable function f , then we get a

randomized FPT algorithm with running time O∗(f(k)).
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Vertex Cover

For a graph G = (V,E) a vertex cover X ⊆ V is a set of vertices such that every
edge is adjacent to a vertex in X.

Vertex Cover
Input: Graph G, integer k
Parameter: k
Question: Does G have a vertex cover of size k?

Warm-up: design a randomized algorithm with running time O∗(2k).
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Randomized Algorithm for Vertex Cover

Algorithm rvc(G = (V,E), k)

S ← ∅
while k > 0 and E 6= ∅ do

Select an edge uv ∈ E uniformly at random
Select an endpoint w ∈ {u, v} uniformly at random
S ← S ∪ {w}
G← G− w
k ← k − 1

if S is a vertex cover of G then
return Yes

else
return No
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Success probability

Let C be a minimal vertex cover of G of size k

What is the probability that Algorithm rvc returns C?

When it selects an edge uv ∈ E, we have that {u, v} ∩ C 6= ∅
When it selects a random endpoint w ∈ {u, v}, we have that w ∈ C with
probability ≥ 1/2

It finds C with probability at least 1/2k
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Randomized Algorithm for Vertex Cover

Theorem 5

Vertex Cover has a randomized algorithm with running time O∗(2k).

Proof.
If G has vertex cover number at most k, then Algorithm rvc finds one with
probability at least 1

2k
.

Applying Theorem 4 gives a randomized FPT running time of O∗(2k).
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Feedback Vertex Set

A feedback vertex set of a multigraph G = (V,E) is a set of vertices S ⊂ V such
that G− S is acyclic.

Feedback Vertex Set
Input: Multigraph G, integer k
Parameter: k
Question: Does G have a feedback vertex of size k?

Recall the following simplification rules for Feedback Vertex Set.
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Simplification Rules

1 Loop: If loop at vertex v, remove v and decrease k by 1

2 Multiedge: Reduce the multiplicity of each edge with multiplicity ≥ 3 to 2.

3 Degree-1: If v has degree at most 1 then remove v.

4 Degree-2: If v has degree 2 with neighbors u,w then delete 2 edges uv, vw
and replace with new edge uw.
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The solution is incident to a constant fraction of the edges

Lemma 6

Let G be a multigraph with minimum degree at least 3. Then, for every feedback
vertex set X of G, at least 1/3 of the edges have at least one endpoint in X.

Proof.
Denote by n and m the number of vertices and edges of G, respectively.
Since δ(G) ≥ 3, we have that m ≥ 3n/2.
Let F := G−X.
Since F has at most n− 1 edges, at least 1

3 of the edges have an endpoint in
X.
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Randomized Algorithm

Theorem 7

Feedback Vertex Set has a randomized algorithm with running time O∗(6k).

We prove the theorem using the following algorithm.

S ← ∅
Do k times: Apply simplification rules; add a random endpoint of a random
edge to S.

If S is a feedback vertex set, return Yes, otherwise return No.
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Proof

Proof.
We need to show: each time the algorithm adds a vertex v to S, if
(G− S, k − |S|) is a Yes-instance, then with probability at least 1/6, the
instance (G− (S ∪ {v}), k − |S| − 1) is also a Yes-instance. Then, by
induction, we can conclude that with probability 1/(6k), the algorithm finds a
feedback vertex set of size at most k if it is given a Yes-instance.

Assume (G− S, k − |S|) is a Yes-instance.

Lemma 6 implies that with probability at least 1/3, a randomly chosen edge
uv has at least one endpoint in some feedback vertex set of size k − |S|.
So, with probability at least 1

2 ·
1
3 = 1

6 , a randomly chosen endpoint of uv
belongs some feedback vertex set of size ≤ k − |S|.
Applying Theorem 4 gives a randomized FPT running time of O∗(6k).
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Improved analysis

Lemma 8
Let G be a multigraph with minimum degree at least 3. For every feedback vertex
set X, at least 1/2 of the edges of G have at least one endpoint in X.

Note: For a feedback vertex set X, consider the forest F := G−X. The
statement is equivalent to:

|E(G) \ E(F )| ≥ |E(F )|

Let J ⊆ E(G) denote the edges with one endpoint in X, and the other in V (F ).
We will show the stronger result:

|J | ≥ |V (F )|
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Improved analysis

Proof.
Let V≤1, V2, V≥3 be the set of vertices that have degree at most 1, exactly 2,
and at least 3, respectively, in F .

Since δ(G) ≥ 3, each vertex in V≤1 contributes at least 2 edges to J , and
each vertex in V2 contributes at least 1 edge to J .

We show that |V≥3| ≤ |V≤1| by induction on |V (F )|.
Trivially true for forests with at most 1 vertex.
Assume true for forests with at most n− 1 vertices.
For any forest on n vertices, consider removing a leaf (which must always
exist) to obtain F ′ with the vertex partition (V ′≤1, V

′
2 , V

′
≥3).

If |V≥3| = |V ′≥3|, then we have that |V≥3| = |V ′≥3| ≤ |V ′≤1| ≤ |V≥1|.
Otherwise, |V≥3| = |V ′≥3|+ 1 ≤ |V ′≤1|+ 1 = |V≤1|.

We conclude that:

|E(G) \ E(F )| ≥ |J | ≥ 2|V≤1|+ |V2| ≥ |V≤1|+ |V2|+ |V≥3| = |V (F )|
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Improved Randomized Algorithm

Theorem 9

Feedback Vertex Set has a randomized algorithm with running time O∗(4k).

Note
This algorithmic method is applicable whenever the vertex set we seek is incident
to a constant fraction of the edges.
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Longest Path

Longest Path
Input: Graph G, integer k
Parameter: k
Question: Does G have a path on k vertices as a subgraph?

NP-complete

To show that Longest Path is NP-hard, reduce from Hamiltonian Path by
setting k = n and leaving the graph unchanged.
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Color Coding

Notation: [k] = {1, 2, . . . , k}

Lemma 10

Let U be a set of size n, and let X ⊆ U be a subset of size k. Let χ : U → [k] be
a coloring of the elements of U , chosen uniformly at random. Then the probability
that the elements of X are colored with pairwise distinct colors is at least e−k.

Proof.

There are kn possible colorings χ and k!kn−k of them are injective on X. Using
the inequality

k! > (k/e)k,

the lemma follows since

k! · kn−k

kn
>
kk · kn−k

ek · kn
= e−k.
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Colorful Path

A path is colorful if all vertices of the path are colored with pairwise distinct colors.

Lemma 11

Let G be an undirected graph, and let χ : V (G)→ [k] be a coloring of its vertices
with k colors. There is an algorithm that checks in time O∗(2k) whether G
contains a colorful path on k vertices.
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Colorful Path II

Proof.

Partition V (G) into V1, ..., Vk subsets such that vertices in Vi are colored i.

Apply dynamic programming on nonempty S ⊆ {1, ..., k}. For u ∈
⋃

i∈S Vi let
P (S, u) = true if there is a colorful path with colors from S and u as an
endpoint. We have the following:

For |S| = 1, P (S, u) = true for u ∈ V (G) iff S = {χ(u)}.
For |S| > 1

P (S, u) =

{∨
uv∈E(G) P (S\{χ(u)}, v) if χ(u) ∈ S

false otherwise

All values of P can be computed in O∗(2k) time and there exists a colorful k-path
iff P ([k], v) is true for some vertex v ∈ V (G).
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Longest Path

Theorem 12

Longest Path has a randomized algorithm with running time O∗((2 · e)k).

Note
This algorithmic method is applicable whenever we seek a vertex set S of size
f(k) such that G[S] has constant treewidth.
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Exponential-time algorithms and parameterized algorithms

Exponential-time algorithms

Algorithms for NP-hard problems

Beat brute-force & improve

Running time measured in the size
of the universe n

O(2n · n), O(1.5086n), O(1.0892n)

Parameterized algorithms

Algorithms for NP-hard problems

Use a parameter k
(often k is the solution size)

Algorithms with running time
f(k) · nc

kknO(1), 5knO(1), O(1.2738k +kn)

Can we use Parameterized algorithms to design fast Exponential-time algorithms?
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Example: Feedback Vertex Set

S ⊆ V is a feedback vertex set in a graph G = (V,E) if G− S is acyclic.

Feedback Vertex Set
Input: Graph G = (V,E), integer k
Parameter: k
Question: Does G have a feedback vertex set of size

at most k?

Exponential-time algorithms

O∗(2n) trivial

O(1.7548n) [Fom+08]

O(1.7347n) [FV10]

O(1.7266n) [XN15]

Parameterized algorithms

O∗((17k4)!) [Bod94]

O∗((2k + 1)k) [DF99]
...

O∗(3.460k) deterministic [IK19]

O∗(2.7k) randomized [LN19]
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...

O∗(3.460k) deterministic [IK19]

O∗(2.7k) randomized [LN19]
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Exponential-time algorithms via parameterized algorithms

Binomial coefficients

arg max
0≤k≤n

(
n

k

)
= n/2 and

(
n

n/2

)
= Θ(2n/

√
n)

Algorithm for Feedback Vertex Set

Set t = 0.60909 · n
If k ≤ t, run O∗(3k) algorithm

Else check all

(
n

k

)
vertex subsets of size k

Running time: O∗
(

max

(
3t,

(
n

t

)))
= O∗(1.9526n)

This approach gives algorithms faster than O∗(2n) for subset problems with a
parameterized algorithm faster than O∗(4k).
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Subset Problems

An implicit set system is a function Φ with:

Input: instance I ∈ {0, 1}∗, |I| = N

Output: set system (UI ,FI):

universe UI , |UI | = n
family FI of subsets of UI

Φ-Subset
Input: Instance I
Question: Is |FI | > 0?

Φ-Extension
Input: Instance I, a set X ⊆ UI , and an integer k
Question: Does there exist a subset S ⊆ (UI\X) such that S ∪X ∈ FI and

|S| ≤ k?
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Algorithm

Suppose Φ-Extension has a O∗(ck) time algorithm B.

Algorithm for checking whether FI contains a set of size k

Set t = max
(

0, ck−nc−1

)
Uniformly at random select a subset X ⊆ UI of size t

Run B(I,X, k − t)

Running time: [Fom+19]

O∗

((
n
t

)(
k
t

) · ck−t) = O∗
(

2− 1

c

)n

S. Gaspers (UNSW) Randomized Algorithms 19T3 34 / 41



Algorithm

Suppose Φ-Extension has a O∗(ck) time algorithm B.

Algorithm for checking whether FI contains a set of size k

Set t = max
(

0, ck−nc−1

)
Uniformly at random select a subset X ⊆ UI of size t

Run B(I,X, k − t)

Running time: [Fom+19]

O∗

((
n
t

)(
k
t

) · ck−t) = O∗
(

2− 1

c

)n

S. Gaspers (UNSW) Randomized Algorithms 19T3 34 / 41



Intuition

Brute-force randomized algorithm

Pick k elements of the universe one-by-one.

Suppose FI contains a set of size k.

Success probability:

k

n
· k − 1

n− 1
· ...·k − t

n− t
· ... · 2

n− (k − 2)

1

n− (k − 1)
=

1(
n
k

)
=

1

c
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Randomized Monotone Local Search

Theorem 13 ([Fom+19])

If there exists a (randomized) algorithm for Φ-Extension with running time
O∗(ck) then there exists a randomized algorithm for Φ-Subset with running time
(2− 1

c )n ·NO(1).

Theorem 14 ([Fom+19])

Feedback Vertex Set has a randomized algorithm with running time
O∗
((

2− 1
2.7

)n) ⊆ O(1.6297n).
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Derandomization

Derandomization at the expense of a subexponential factor in the running time.

Theorem 15 ([Fom+19])

If there exists an algorithm for Φ-Extension with running time O∗(ck) then
there exists an algorithm for Φ-Subset with running time (2− 1

c )n+o(n) ·NO(1).

Theorem 16 ([Fom+19])

Feedback Vertex Set has an algorithm with running time
O∗
((

2− 1
3.460

)n) ⊆ O(1.7110n).
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Further Reading

Chapter 5, Randomized methods in parameterized algorithms by [Cyg+15]

Exact Algorithms via Monotone Local Search [Fom+19]
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