8a. Randomized Algorithms COMP6741: Parameterized and Exact Computation

Serge Gaspers

School of Computer Science and Engineering, UNSW Sydney, Australia

19T3

2 Vertex Cover

3 Feedback Vertex Set

4 Color Coding

5 Monotone Local Search

1 Introduction

- 2 Vertex Cover
- 3 Feedback Vertex Set

4 Color Coding

5 Monotone Local Search

- Turing machines do not inherently have access to randomness.
- Assume algorithm has also access to a stream of random bits drawn uniformly at random.
- With r random bits, the probability space is the set of all 2^r possible strings of random bits (with uniform distribution).

Definition 1

A Las Vegas algorithm is a randomized algorithm whose output is always correct.

Randomness is used to upper bound the expected running time of the algorithm.

Example

Quicksort with random choice of pivot.

Definition 2

- A Monte Carlo algorithm is an algorithm whose output is incorrect with probability at most p, 0 .
- A Monte Carlo has one sided error if its output is incorrect only on $\rm YES\text{-}instances$ or on NO-instances, but not both.
- A one-sided error Monte Carlo algorithm with false negatives answers No for every No-instance, and answers YES on YES-instances with probability $p \in (0, 1)$. We say that p is the success probability of the algorithm.

Suppose A is a one-sided Monte Carlo algorithm with false negatives with success probability p. How can we use A to design a new one-sided Monte Carlo algorithm with success probability $p^* > p$?

Suppose A is a one-sided Monte Carlo algorithm with false negatives with success probability p. How can we use A to design a new one-sided Monte Carlo algorithm with success probability $p^* > p$?

Let $t = -\frac{\ln(1-p^*)}{p}$ and run the algorithm t times. Return YES if at least one run of the algorithm returned YES, and NO otherwise.

Suppose A is a one-sided Monte Carlo algorithm with false negatives with success probability p. How can we use A to design a new one-sided Monte Carlo algorithm with success probability $p^* > p$?

Let $t = -\frac{\ln(1-p^*)}{p}$ and run the algorithm t times. Return YES if at least one run of the algorithm returned YES, and NO otherwise. Failure probability is

$$(1-p)^t \le (e^{-p})^t = e^{-p \cdot t} = e^{\ln(1-p^*)} = 1-p^*$$

via the inequality $1 - x \leq e^{-x}$.

Suppose A is a one-sided Monte Carlo algorithm with false negatives with success probability p. How can we use A to design a new one-sided Monte Carlo algorithm with success probability $p^* > p$?

Let $t = -\frac{\ln(1-p^*)}{p}$ and run the algorithm t times. Return YES if at least one run of the algorithm returned YES, and NO otherwise. Failure probability is

$$(1-p)^t \le (e^{-p})^t = e^{-p \cdot t} = e^{\ln(1-p^*)} = 1-p^*$$

via the inequality $1 - x \le e^{-x}$.

Definition 3

A randomized algorithm is a one-sided Monte Carlo algorithm with constant success probability.

Theorem 4

If a one-sided error Monte Carlo algorithm has success probability at least p, then repeating it independently $\lceil \frac{1}{p} \rceil$ times gives constant success probability.

In particular if we have a polynomial-time one-sided error Monte Carlo algorithm with success probability $p = \frac{1}{f(k)}$ for some computable function f, then we get a randomized FPT algorithm with running time $O^*(f(k))$.

Introduction

2 Vertex Cover

3 Feedback Vertex Set

4 Color Coding

5 Monotone Local Search

For a graph G = (V, E) a vertex cover $X \subseteq V$ is a set of vertices such that every edge is adjacent to a vertex in X.

Vertex Cover		
Input:	Graph G , integer k	
Parameter:	k	
Question:	Does G have a vertex cover of size k ?	

For a graph G = (V, E) a vertex cover $X \subseteq V$ is a set of vertices such that every edge is adjacent to a vertex in X.

Vertex Cover		
Input:	Graph G , integer k	
Parameter:	k	
Question:	Does G have a vertex cover of size k ?	

Warm-up: design a randomized algorithm with running time $O^*(2^k)$.

```
Algorithm \operatorname{rvc}(G = (V, E), k)

S \leftarrow \emptyset

while k > 0 and E \neq \emptyset do

Select an edge uv \in E uniformly at random

Select an endpoint w \in \{u, v\} uniformly at random

S \leftarrow S \cup \{w\}

G \leftarrow G - w

k \leftarrow k - 1
```

else

L return No

- Let C be a minimal vertex cover of G of size k
- What is the probability that Algorithm rvc returns C?
- When it selects an edge $uv \in E$, we have that $\{u,v\} \cap C \neq \emptyset$
- When it selects a random endpoint $w \in \{u,v\},$ we have that $w \in C$ with probability $\geq 1/2$
- It finds C with probability at least $1/2^k$

Theorem 5

VERTEX COVER has a randomized algorithm with running time $O^*(2^k)$.

Proof.

- If G has vertex cover number at most k, then Algorithm rvc finds one with probability at least ¹/_{2k}.
- Applying Theorem 4 gives a randomized FPT running time of $O^*(2^k)$.

Introduction

2 Vertex Cover

3 Feedback Vertex Set

4 Color Coding

5 Monotone Local Search

A feedback vertex set of a multigraph G = (V, E) is a set of vertices $S \subset V$ such that G - S is acyclic.

FEEDBACK VERTEX SETInput:Multigraph G, integer kParameter:kQuestion:Does G have a feedback vertex of size k?

A feedback vertex set of a multigraph G = (V, E) is a set of vertices $S \subset V$ such that G - S is acyclic.

FEEDBACK VERTEX SETInput:Multigraph G, integer kParameter:kQuestion:Does G have a feedback vertex of size k?

Recall the following simplification rules for FEEDBACK VERTEX SET.

- Loop: If loop at vertex v, remove v and decrease k by 1
- **2** Multiedge: Reduce the multiplicity of each edge with multiplicity ≥ 3 to 2.
- **③** Degree-1: If v has degree at most 1 then remove v.
- Obegree-2: If v has degree 2 with neighbors u, w then delete 2 edges uv, vw and replace with new edge uw.

Lemma 6

Let G be a multigraph with minimum degree at least 3. Then, for every feedback vertex set X of G, at least 1/3 of the edges have at least one endpoint in X.

Lemma 6

Let G be a multigraph with minimum degree at least 3. Then, for every feedback vertex set X of G, at least 1/3 of the edges have at least one endpoint in X.

Proof.

```
Denote by n and m the number of vertices and edges of G, respectively.
Since \delta(G) \geq 3, we have that m \geq 3n/2.
Let F := G - X.
Since F has at most n - 1 edges, at least \frac{1}{3} of the edges have an endpoint in X.
```

Theorem 7

FEEDBACK VERTEX SET has a randomized algorithm with running time $O^*(6^k)$.

Theorem 7

FEEDBACK VERTEX SET has a randomized algorithm with running time $O^*(6^k)$.

We prove the theorem using the following algorithm.

- $S \leftarrow \emptyset$
- Do k times: Apply simplification rules; add a random endpoint of a random edge to S.
- If S is a feedback vertex set, return YES, otherwise return No.

• We need to show: each time the algorithm adds a vertex v to S, if (G - S, k - |S|) is a YES-instance, then with probability at least 1/6, the instance $(G - (S \cup \{v\}), k - |S| - 1)$ is also a YES-instance. Then, by induction, we can conclude that with probability $1/(6^k)$, the algorithm finds a feedback vertex set of size at most k if it is given a YES-instance.

- We need to show: each time the algorithm adds a vertex v to S, if (G S, k |S|) is a YES-instance, then with probability at least 1/6, the instance $(G (S \cup \{v\}), k |S| 1)$ is also a YES-instance. Then, by induction, we can conclude that with probability $1/(6^k)$, the algorithm finds a feedback vertex set of size at most k if it is given a YES-instance.
- Assume (G S, k |S|) is a YES-instance.
- Lemma 6 implies that with probability at least 1/3, a randomly chosen edge uv has at least one endpoint in some feedback vertex set of size k |S|.
- So, with probability at least $\frac{1}{2} \cdot \frac{1}{3} = \frac{1}{6}$, a randomly chosen endpoint of uv belongs some feedback vertex set of size $\leq k |S|$.

- We need to show: each time the algorithm adds a vertex v to S, if (G S, k |S|) is a YES-instance, then with probability at least 1/6, the instance $(G (S \cup \{v\}), k |S| 1)$ is also a YES-instance. Then, by induction, we can conclude that with probability $1/(6^k)$, the algorithm finds a feedback vertex set of size at most k if it is given a YES-instance.
- Assume (G S, k |S|) is a YES-instance.
- Lemma 6 implies that with probability at least 1/3, a randomly chosen edge uv has at least one endpoint in some feedback vertex set of size k |S|.
- So, with probability at least $\frac{1}{2} \cdot \frac{1}{3} = \frac{1}{6}$, a randomly chosen endpoint of uv belongs some feedback vertex set of size $\leq k |S|$.
- Applying Theorem 4 gives a randomized FPT running time of $O^*(6^k)$.

Lemma 8

Let G be a multigraph with minimum degree at least 3. For every feedback vertex set X, at least 1/2 of the edges of G have at least one endpoint in X.

Lemma 8

Let G be a multigraph with minimum degree at least 3. For every feedback vertex set X, at least 1/2 of the edges of G have at least one endpoint in X.

Note: For a feedback vertex set X, consider the forest F := G - X. The statement is equivalent to:

$$|E(G) \setminus E(F)| \ge |E(F)|$$

Let $J \subseteq E(G)$ denote the edges with one endpoint in X, and the other in V(F). We will show the stronger result:

$$|J| \ge |V(F)|$$

Proof.

• Let $V_{\leq 1}, V_2, V_{\geq 3}$ be the set of vertices that have degree at most 1, exactly 2, and at least 3, respectively, in F.

Proof.

- Let $V_{\leq 1}, V_2, V_{\geq 3}$ be the set of vertices that have degree at most 1, exactly 2, and at least 3, respectively, in F.
- Since $\delta(G) \ge 3$, each vertex in $V_{\le 1}$ contributes at least 2 edges to J, and each vertex in V_2 contributes at least 1 edge to J.

Proof.

- Let $V_{\leq 1}, V_2, V_{\geq 3}$ be the set of vertices that have degree at most 1, exactly 2, and at least 3, respectively, in F.
- Since $\delta(G) \ge 3$, each vertex in $V_{\le 1}$ contributes at least 2 edges to J, and each vertex in V_2 contributes at least 1 edge to J.
- We show that $|V_{\geq 3}| \leq |V_{\leq 1}|$ by induction on |V(F)|.
 - Trivially true for forests with at most 1 vertex.
 - Assume true for forests with at most n-1 vertices.
 - For any forest on n vertices, consider removing a leaf (which must always exist) to obtain F' with the vertex partition $(V'_{\leq 1}, V'_2, V'_{\geq 3})$. If $|V_{\geq 3}| = |V'_{\geq 3}|$, then we have that $|V_{\geq 3}| = |V'_{\geq 3}| \leq |V'_{\leq 1}| \leq |V_{\geq 1}|$. Otherwise, $|V_{\geq 3}| = |V'_{\geq 3}| + 1 \leq |V'_{\leq 1}| + 1 = |V_{\leq 1}|$.

Proof.

- Let $V_{\leq 1}, V_2, V_{\geq 3}$ be the set of vertices that have degree at most 1, exactly 2, and at least 3, respectively, in F.
- Since $\delta(G) \ge 3$, each vertex in $V_{\le 1}$ contributes at least 2 edges to J, and each vertex in V_2 contributes at least 1 edge to J.
- We show that $|V_{\geq 3}| \leq |V_{\leq 1}|$ by induction on |V(F)|.
 - Trivially true for forests with at most 1 vertex.
 - Assume true for forests with at most n-1 vertices.
 - For any forest on n vertices, consider removing a leaf (which must always exist) to obtain F' with the vertex partition $(V'_{\leq 1}, V'_2, V'_{\geq 3})$. If $|V_{\geq 3}| = |V'_{\geq 3}|$, then we have that $|V_{\geq 3}| = |V'_{\geq 3}| \le |V'_{\leq 1}| \le |V_{\geq 1}|$. Otherwise, $|V_{\geq 3}| = |V'_{\geq 3}| + 1 \le |V'_{\leq 1}| + 1 = |V_{\leq 1}|$.
- We conclude that:

 $|E(G) \setminus E(F)| \ge |J| \ge 2|V_{\le 1}| + |V_2| \ge |V_{\le 1}| + |V_2| + |V_{\ge 3}| = |V(F)|$

Theorem 9

FEEDBACK VERTEX SET has a randomized algorithm with running time $O^*(4^k)$.

Note

This algorithmic method is applicable whenever the vertex set we seek is incident to a constant fraction of the edges.

Introduction

- 2 Vertex Cover
- 3 Feedback Vertex Set

4 Color Coding

5 Monotone Local Search

Longest Path	
Input:	Graph G , integer k
Parameter:	k
Question:	Does G have a path on k vertices as a subgraph?

Longest Path		
Input:	Graph G , integer k	
Parameter:	k	
Question:	Does G have a path on k vertices as a subgraph?	

NP-complete

To show that LONGEST PATH is NP-hard, reduce from HAMILTONIAN PATH by setting k = n and leaving the graph unchanged.

Color Coding

Notation: $[k] = \{1, 2, ..., k\}$

Lemma 10

Let U be a set of size n, and let $X \subseteq U$ be a subset of size k. Let $\chi : U \to [k]$ be a coloring of the elements of U, chosen uniformly at random. Then the probability that the elements of X are colored with pairwise distinct colors is at least e^{-k} .

Color Coding

Notation: $[k] = \{1, 2, ..., k\}$

Lemma 10

Let U be a set of size n, and let $X \subseteq U$ be a subset of size k. Let $\chi : U \to [k]$ be a coloring of the elements of U, chosen uniformly at random. Then the probability that the elements of X are colored with pairwise distinct colors is at least e^{-k} .

Proof.

There are k^n possible colorings χ and $k!k^{n-k}$ of them are injective on X. Using the inequality

 $k! > (k/e)^k,$

the lemma follows since

$$\frac{k! \cdot k^{n-k}}{k^n} > \frac{k^k \cdot k^{n-k}}{e^k \cdot k^n} = e^{-k}.$$

A path is colorful if all vertices of the path are colored with pairwise distinct colors.

Lemma 11

Let G be an undirected graph, and let $\chi : V(G) \to [k]$ be a coloring of its vertices with k colors. There is an algorithm that checks in time $O^*(2^k)$ whether G contains a colorful path on k vertices.

Partition V(G) into $V_1, ..., V_k$ subsets such that vertices in V_i are colored *i*.

Partition V(G) into $V_1, ..., V_k$ subsets such that vertices in V_i are colored *i*. Apply dynamic programming on nonempty $S \subseteq \{1, ..., k\}$. For $u \in \bigcup_{i \in S} V_i$ let P(S, u) = true if there is a colorful path with colors from S and u as an endpoint.

Partition V(G) into $V_1, ..., V_k$ subsets such that vertices in V_i are colored *i*. Apply dynamic programming on nonempty $S \subseteq \{1, ..., k\}$. For $u \in \bigcup_{i \in S} V_i$ let P(S, u) = true if there is a colorful path with colors from S and u as an endpoint. We have the following:

• For
$$|S| = 1$$
, $P(S, u) = true$ for $u \in V(G)$ iff $S = \{\chi(u)\}$.

• For |S| > 1

$$P(S, u) = \begin{cases} \bigvee_{uv \in E(G)} P(S \setminus \{\chi(u)\}, v) & \text{ if } \chi(u) \in S \\ false & \text{ otherwise} \end{cases}$$

Partition V(G) into $V_1, ..., V_k$ subsets such that vertices in V_i are colored *i*. Apply dynamic programming on nonempty $S \subseteq \{1, ..., k\}$. For $u \in \bigcup_{i \in S} V_i$ let P(S, u) = true if there is a colorful path with colors from S and u as an endpoint. We have the following:

• For
$$|S| = 1$$
, $P(S, u) = true$ for $u \in V(G)$ iff $S = \{\chi(u)\}$.

• For |S| > 1

$$P(S, u) = \begin{cases} \bigvee_{uv \in E(G)} P(S \setminus \{\chi(u)\}, v) & \text{ if } \chi(u) \in S\\ false & \text{ otherwise} \end{cases}$$

All values of P can be computed in $O^*(2^k)$ time and there exists a colorful k-path iff P([k], v) is true for some vertex $v \in V(G)$.

Theorem 12

LONGEST PATH has a randomized algorithm with running time $O^*((2 \cdot e)^k)$.

Note

This algorithmic method is applicable whenever we seek a vertex set S of size f(k) such that G[S] has constant treewidth.

Introduction

- 2 Vertex Cover
- 3 Feedback Vertex Set

4 Color Coding

5 Monotone Local Search

Exponential-time algorithms

- Algorithms for NP-hard problems
- Beat brute-force & improve
- Running time measured in the size of the universe n
- $O(2^n \cdot n)$, $O(1.5086^n)$, $O(1.0892^n)$

Parameterized algorithms

- Algorithms for NP-hard problems
- Use a parameter k (often k is the solution size)
- Algorithms with running time $f(k) \cdot n^c$
- $k^k n^{O(1)}$, $5^k n^{O(1)}$, $O(1.2738^k + kn)$

Can we use Parameterized algorithms to design fast Exponential-time algorithms?

Example: Feedback Vertex Set

 $S \subseteq V$ is a feedback vertex set in a graph G = (V, E) if G - S is acyclic.

FEEDBACK VERTEX SET

k

Input: Graph G = (V, E), integer k

Parameter:

Question: Does G have a feedback vertex set of size at most k?

Example: Feedback Vertex Set

 $S \subseteq V$ is a feedback vertex set in a graph G = (V, E) if G - S is acyclic.

Exponential-time algorithms

- $O^*(2^n)$ trivial
- $O(1.7548^n)$ [Fom+08]
- $O(1.7347^n)$ [FV10]
- O(1.7266ⁿ) [XN15]

Parameterized algorithms

- $O^*((17k^4)!)$ [Bod94]
- $O^*((2k+1)^k)$ [DF99]
- $O^*(3.460^k)$ deterministic [IK19]
- $O^*(2.7^k)$ randomized [LN19]

Exponential-time algorithms via parameterized algorithms

Binomial coefficients

$$\underset{0 \le k \le n}{\arg \max} \binom{n}{k} = n/2 \quad \text{and} \quad \binom{n}{n/2} = \Theta(2^n/\sqrt{n})$$

Binomial coefficients

$$\underset{0 \le k \le n}{\arg \max} \binom{n}{k} = n/2 \quad \text{and} \quad \binom{n}{n/2} = \Theta(2^n/\sqrt{n})$$

Algorithm for $\ensuremath{\operatorname{Feedback}}$ Vertex Set

- Set $t = 0.60909 \cdot n$
- If $k \leq t$, run $O^*(3^k)$ algorithm
- Else check all $\binom{n}{k}$ vertex subsets of size k

Running time:
$$O^*\left(\max\left(3^t, \binom{n}{t}\right)\right) = O^*(1.9526^n)$$

Binomial coefficients

$$\underset{0 \le k \le n}{\arg \max} \binom{n}{k} = n/2 \quad \text{and} \quad \binom{n}{n/2} = \Theta(2^n/\sqrt{n})$$

Algorithm for $\ensuremath{\operatorname{Feedback}}$ Vertex Set

- Set $t = 0.60909 \cdot n$
- If $k \leq t$, run $O^*(3^k)$ algorithm
- Else check all $\binom{n}{k}$ vertex subsets of size k

Running time: $O^*\left(\max\left(3^t, \binom{n}{t}\right)\right) = O^*(1.9526^n)$

This approach gives algorithms faster than $O^*(2^n)$ for subset problems with a parameterized algorithm faster than $O^*(4^k)$.

Subset Problems

An *implicit set system* is a function Φ with:

- Input: instance $I \in \{0,1\}^*$, |I| = N
- Output: set system (U_I, \mathcal{F}_I) :
 - universe U_I , $|U_I| = n$
 - family \mathcal{F}_I of subsets of U_I

Subset Problems

An *implicit set system* is a function Φ with:

- Input: instance $I \in \{0,1\}^*$, |I| = N
- Output: set system (U_I, \mathcal{F}_I) :
 - universe U_I , $|U_I| = n$
 - family \mathcal{F}_I of subsets of U_I

Φ -Subset	
Input:	Instance I
Question:	Is $ \mathcal{F}_I > 0$?

Subset Problems

An *implicit set system* is a function Φ with:

- Input: instance $I \in \{0,1\}^*$, |I| = N
- Output: set system (U_I, \mathcal{F}_I) :
 - universe U_I , $|U_I| = n$
 - family \mathcal{F}_I of subsets of U_I

Φ -Subset	
Input:	Instance I
Question:	$Is \; \mathcal{F}_I > 0?$

Φ -Extension	
Input:	Instance I , a set $X \subseteq U_I$, and an integer k
Question:	Does there exist a subset $S \subseteq (U_I \setminus X)$ such that $S \cup X \in \mathcal{F}_I$ and
	$ S \leq k?$

Suppose Φ -EXTENSION has a $O^*(c^k)$ time algorithm B.

Algorithm for checking whether \mathcal{F}_I contains a set of size k

- Set $t = \max\left(0, \frac{ck-n}{c-1}\right)$
- Uniformly at random select a subset $X \subseteq U_I$ of size t
- Run B(I, X, k-t)

Suppose Φ -EXTENSION has a $O^*(c^k)$ time algorithm B.

Algorithm for checking whether \mathcal{F}_I contains a set of size k

- Set $t = \max\left(0, \frac{ck-n}{c-1}\right)$
- Uniformly at random select a subset $X \subseteq U_I$ of size t
- Run B(I, X, k-t)

Running time: [Fom+19]

$$O^*\left(\frac{\binom{n}{t}}{\binom{k}{t}} \cdot c^{k-t}\right) = O^*\left(2 - \frac{1}{c}\right)^n$$

Brute-force randomized algorithm

- Pick k elements of the universe one-by-one.
- Suppose \mathcal{F}_I contains a set of size k.

Success probability:

$$\frac{k}{n} \cdot \frac{k-1}{n-1} \cdot \dots \cdot \frac{k-t}{n-t} \cdot \dots \cdot \frac{2}{n-(k-2)} \frac{1}{n-(k-1)} = \frac{1}{\binom{n}{k}}$$

$$\parallel$$

$$\frac{1}{c}$$

Theorem 13 ([Fom+19])

If there exists a (randomized) algorithm for Φ -EXTENSION with running time $O^*(c^k)$ then there exists a randomized algorithm for Φ -SUBSET with running time $(2 - \frac{1}{c})^n \cdot N^{O(1)}$.

Theorem 13 ([Fom+19])

If there exists a (randomized) algorithm for Φ -EXTENSION with running time $O^*(c^k)$ then there exists a randomized algorithm for Φ -SUBSET with running time $(2 - \frac{1}{c})^n \cdot N^{O(1)}$.

Theorem 14 ([Fom+19])

FEEDBACK VERTEX SET has a randomized algorithm with running time $O^*\left(\left(2-\frac{1}{2.7}\right)^n\right) \subseteq O(1.6297^n).$

Derandomization at the expense of a subexponential factor in the running time.

Theorem 15 ([Fom+19])

If there exists an algorithm for Φ -EXTENSION with running time $O^*(c^k)$ then there exists an algorithm for Φ -SUBSET with running time $(2 - \frac{1}{c})^{n+o(n)} \cdot N^{O(1)}$. Derandomization at the expense of a subexponential factor in the running time.

Theorem 15 ([Fom+19])

If there exists an algorithm for Φ -EXTENSION with running time $O^*(c^k)$ then there exists an algorithm for Φ -SUBSET with running time $(2 - \frac{1}{c})^{n+o(n)} \cdot N^{O(1)}$.

Theorem 16 ([Fom+19])

FEEDBACK VERTEX SET has an algorithm with running time $O^*\left(\left(2-\frac{1}{3.460}\right)^n\right) \subseteq O(1.7110^n).$

- Chapter 5, Randomized methods in parameterized algorithms by [Cyg+15]
- Exact Algorithms via Monotone Local Search [Fom+19]

References I

- ▶ [Bod94] Hans L. Bodlaender. "On Disjoint Cycles". In: International Journal of Foundations of Computer Science 5.1 (1994), pp. 59–68.
- [Cyg+15] Marek Cygan, Fedor V. Fomin, Łukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin Pilipczuk, Michał Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
- [DF99] Rodney G. Downey and Michael R. Fellows. Parameterized Complexity. Monographs in Computer Science. New York: Springer, 1999.
- [FV10] Fedor V. Fomin and Yngve Villanger. "Finding Induced Subgraphs via Minimal Triangulations". In: Proceedings of the 27th International Symposium on Theoretical Aspects of Computer Science (STACS 2010). Vol. 5. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2010, pp. 383–394.

References II

- [Fom+08] Fedor V. Fomin, Serge Gaspers, Artem V. Pyatkin, and Igor Razgon. "On the minimum feedback vertex set problem: exact and enumeration algorithms". In: *Algorithmica* 52.2 (2008), pp. 293–307. ISSN: 0178-4617.
 [Fom+19] Fedor V. Fomin, Serge Gaspers, Daniel Lokshtanov, and
- [Fom+19] Fedor V. Fomin, Serge Gaspers, Daniel Lokshtanov, and Saket Saurabh. "Exact Algorithms via Monotone Local Search". In: Journal of the ACM 66.2 (2019), 8:1–8:23.
- FIK19] Yoichi Iwata and Yusuke Kobayashi. Improved Analysis of Highest-Degree Branching for Feedback Vertex Set. Tech. rep. abs/1905.12233. arXiv CoRR, 2019. URL: http://arxiv.org/abs/1905.12233.
- ▶ [LN19] Jason Li and Jesper Nederlof. Detecting Feedback Vertex Sets of Size k in O*(2.7^k) Time. Tech. rep. abs/1906.12298. arXiv CoRR, 2019. URL: http://arxiv.org/abs/1906.12298.

References III

▶ [XN15]

Mingyu Xiao and Hiroshi Nagamochi. "An improved exact algorithm for undirected feedback vertex set". In: *Journal of Combinatorial Optimization* 30.2 (2015), pp. 214–241.