
8a. Randomized Algorithms

COMP6741: Parameterized and Exact Computation

Serge Gaspers

School of Computer Science and Engineering, UNSW Sydney, Australia

19T3

S. Gaspers (UNSW) Randomized Algorithms 19T3 1 / 41

Outline

1 Introduction

2 Vertex Cover

3 Feedback Vertex Set

4 Color Coding

5 Monotone Local Search

S. Gaspers (UNSW) Randomized Algorithms 19T3 2 / 41

Outline

1 Introduction

2 Vertex Cover

3 Feedback Vertex Set

4 Color Coding

5 Monotone Local Search

S. Gaspers (UNSW) Randomized Algorithms 19T3 3 / 41

Randomized Algorithms

Turing machines do not inherently have access to randomness.

Assume algorithm has also access to a stream of random bits drawn
uniformly at random.

With r random bits, the probability space is the set of all 2r possible strings
of random bits (with uniform distribution).

S. Gaspers (UNSW) Randomized Algorithms 19T3 4 / 41

Las Vegas algorithms

Definition 1
A Las Vegas algorithm is a randomized algorithm whose output is always correct.

Randomness is used to upper bound the expected running time of the algorithm.

Example

Quicksort with random choice of pivot.

S. Gaspers (UNSW) Randomized Algorithms 19T3 5 / 41

Monte Carlo algorithms

Definition 2
A Monte Carlo algorithm is an algorithm whose output is incorrect with
probability at most p, 0 < p < 1.

A Monte Carlo has one sided error if its output is incorrect only on
Yes-instances or on No-instances, but not both.

A one-sided error Monte Carlo algorithm with false negatives answers No for
every No-instance, and answers Yes on Yes-instances with probability
p ∈ (0, 1). We say that p is the success probability of the algorithm.

S. Gaspers (UNSW) Randomized Algorithms 19T3 6 / 41

Algorithms with increased success probability

Boosting success probability

Suppose A is a one-sided Monte Carlo algorithm with false negatives with success
probability p. How can we use A to design a new one-sided Monte Carlo
algorithm with success probability p∗ > p?

Let t = − ln(1−p∗)
p and run the algorithm t times. Return Yes if at least one run

of the algorithm returned Yes, and No otherwise. Failure probability is

(1− p)t ≤ (e−p)t = e−p·t = eln(1−p
∗) = 1− p∗

via the inequality 1− x ≤ e−x.

Definition 3
A randomized algorithm is a one-sided Monte Carlo algorithm with constant
success probability.

S. Gaspers (UNSW) Randomized Algorithms 19T3 7 / 41

Algorithms with increased success probability

Boosting success probability

Suppose A is a one-sided Monte Carlo algorithm with false negatives with success
probability p. How can we use A to design a new one-sided Monte Carlo
algorithm with success probability p∗ > p?

Let t = − ln(1−p∗)
p and run the algorithm t times. Return Yes if at least one run

of the algorithm returned Yes, and No otherwise.

Failure probability is

(1− p)t ≤ (e−p)t = e−p·t = eln(1−p
∗) = 1− p∗

via the inequality 1− x ≤ e−x.

Definition 3
A randomized algorithm is a one-sided Monte Carlo algorithm with constant
success probability.

S. Gaspers (UNSW) Randomized Algorithms 19T3 7 / 41

Algorithms with increased success probability

Boosting success probability

Suppose A is a one-sided Monte Carlo algorithm with false negatives with success
probability p. How can we use A to design a new one-sided Monte Carlo
algorithm with success probability p∗ > p?

Let t = − ln(1−p∗)
p and run the algorithm t times. Return Yes if at least one run

of the algorithm returned Yes, and No otherwise. Failure probability is

(1− p)t ≤ (e−p)t = e−p·t = eln(1−p
∗) = 1− p∗

via the inequality 1− x ≤ e−x.

Definition 3
A randomized algorithm is a one-sided Monte Carlo algorithm with constant
success probability.

S. Gaspers (UNSW) Randomized Algorithms 19T3 7 / 41

Algorithms with increased success probability

Boosting success probability

Suppose A is a one-sided Monte Carlo algorithm with false negatives with success
probability p. How can we use A to design a new one-sided Monte Carlo
algorithm with success probability p∗ > p?

Let t = − ln(1−p∗)
p and run the algorithm t times. Return Yes if at least one run

of the algorithm returned Yes, and No otherwise. Failure probability is

(1− p)t ≤ (e−p)t = e−p·t = eln(1−p
∗) = 1− p∗

via the inequality 1− x ≤ e−x.

Definition 3
A randomized algorithm is a one-sided Monte Carlo algorithm with constant
success probability.

S. Gaspers (UNSW) Randomized Algorithms 19T3 7 / 41

Amplification

Theorem 4

If a one-sided error Monte Carlo algorithm has success probability at least p, then
repeating it independently d 1pe times gives constant success probability.

In particular if we have a polynomial-time one-sided error Monte Carlo algorithm
with success probability p = 1

f(k) for some computable function f , then we get a

randomized FPT algorithm with running time O∗(f(k)).

S. Gaspers (UNSW) Randomized Algorithms 19T3 8 / 41

Outline

1 Introduction

2 Vertex Cover

3 Feedback Vertex Set

4 Color Coding

5 Monotone Local Search

S. Gaspers (UNSW) Randomized Algorithms 19T3 9 / 41

Vertex Cover

For a graph G = (V,E) a vertex cover X ⊆ V is a set of vertices such that every
edge is adjacent to a vertex in X.

Vertex Cover
Input: Graph G, integer k
Parameter: k
Question: Does G have a vertex cover of size k?

Warm-up: design a randomized algorithm with running time O∗(2k).

S. Gaspers (UNSW) Randomized Algorithms 19T3 10 / 41

Vertex Cover

For a graph G = (V,E) a vertex cover X ⊆ V is a set of vertices such that every
edge is adjacent to a vertex in X.

Vertex Cover
Input: Graph G, integer k
Parameter: k
Question: Does G have a vertex cover of size k?

Warm-up: design a randomized algorithm with running time O∗(2k).

S. Gaspers (UNSW) Randomized Algorithms 19T3 10 / 41

Randomized Algorithm for Vertex Cover

Algorithm rvc(G = (V,E), k)

S ← ∅
while k > 0 and E 6= ∅ do

Select an edge uv ∈ E uniformly at random
Select an endpoint w ∈ {u, v} uniformly at random
S ← S ∪ {w}
G← G− w
k ← k − 1

if S is a vertex cover of G then
return Yes

else
return No

S. Gaspers (UNSW) Randomized Algorithms 19T3 11 / 41

Success probability

Let C be a minimal vertex cover of G of size k

What is the probability that Algorithm rvc returns C?

When it selects an edge uv ∈ E, we have that {u, v} ∩ C 6= ∅
When it selects a random endpoint w ∈ {u, v}, we have that w ∈ C with
probability ≥ 1/2

It finds C with probability at least 1/2k

S. Gaspers (UNSW) Randomized Algorithms 19T3 12 / 41

Randomized Algorithm for Vertex Cover

Theorem 5

Vertex Cover has a randomized algorithm with running time O∗(2k).

Proof.
If G has vertex cover number at most k, then Algorithm rvc finds one with
probability at least 1

2k
.

Applying Theorem 4 gives a randomized FPT running time of O∗(2k).

S. Gaspers (UNSW) Randomized Algorithms 19T3 13 / 41

Outline

1 Introduction

2 Vertex Cover

3 Feedback Vertex Set

4 Color Coding

5 Monotone Local Search

S. Gaspers (UNSW) Randomized Algorithms 19T3 14 / 41

Feedback Vertex Set

A feedback vertex set of a multigraph G = (V,E) is a set of vertices S ⊂ V such
that G− S is acyclic.

Feedback Vertex Set
Input: Multigraph G, integer k
Parameter: k
Question: Does G have a feedback vertex of size k?

Recall the following simplification rules for Feedback Vertex Set.

S. Gaspers (UNSW) Randomized Algorithms 19T3 15 / 41

Feedback Vertex Set

A feedback vertex set of a multigraph G = (V,E) is a set of vertices S ⊂ V such
that G− S is acyclic.

Feedback Vertex Set
Input: Multigraph G, integer k
Parameter: k
Question: Does G have a feedback vertex of size k?

Recall the following simplification rules for Feedback Vertex Set.

S. Gaspers (UNSW) Randomized Algorithms 19T3 15 / 41

Simplification Rules

1 Loop: If loop at vertex v, remove v and decrease k by 1

2 Multiedge: Reduce the multiplicity of each edge with multiplicity ≥ 3 to 2.

3 Degree-1: If v has degree at most 1 then remove v.

4 Degree-2: If v has degree 2 with neighbors u,w then delete 2 edges uv, vw
and replace with new edge uw.

S. Gaspers (UNSW) Randomized Algorithms 19T3 16 / 41

The solution is incident to a constant fraction of the edges

Lemma 6

Let G be a multigraph with minimum degree at least 3. Then, for every feedback
vertex set X of G, at least 1/3 of the edges have at least one endpoint in X.

Proof.
Denote by n and m the number of vertices and edges of G, respectively.
Since δ(G) ≥ 3, we have that m ≥ 3n/2.
Let F := G−X.
Since F has at most n− 1 edges, at least 1

3 of the edges have an endpoint in
X.

S. Gaspers (UNSW) Randomized Algorithms 19T3 17 / 41

The solution is incident to a constant fraction of the edges

Lemma 6

Let G be a multigraph with minimum degree at least 3. Then, for every feedback
vertex set X of G, at least 1/3 of the edges have at least one endpoint in X.

Proof.
Denote by n and m the number of vertices and edges of G, respectively.
Since δ(G) ≥ 3, we have that m ≥ 3n/2.
Let F := G−X.
Since F has at most n− 1 edges, at least 1

3 of the edges have an endpoint in
X.

S. Gaspers (UNSW) Randomized Algorithms 19T3 17 / 41

Randomized Algorithm

Theorem 7

Feedback Vertex Set has a randomized algorithm with running time O∗(6k).

We prove the theorem using the following algorithm.

S ← ∅
Do k times: Apply simplification rules; add a random endpoint of a random
edge to S.

If S is a feedback vertex set, return Yes, otherwise return No.

S. Gaspers (UNSW) Randomized Algorithms 19T3 18 / 41

Randomized Algorithm

Theorem 7

Feedback Vertex Set has a randomized algorithm with running time O∗(6k).

We prove the theorem using the following algorithm.

S ← ∅
Do k times: Apply simplification rules; add a random endpoint of a random
edge to S.

If S is a feedback vertex set, return Yes, otherwise return No.

S. Gaspers (UNSW) Randomized Algorithms 19T3 18 / 41

Proof

Proof.
We need to show: each time the algorithm adds a vertex v to S, if
(G− S, k − |S|) is a Yes-instance, then with probability at least 1/6, the
instance (G− (S ∪ {v}), k − |S| − 1) is also a Yes-instance. Then, by
induction, we can conclude that with probability 1/(6k), the algorithm finds a
feedback vertex set of size at most k if it is given a Yes-instance.

Assume (G− S, k − |S|) is a Yes-instance.

Lemma 6 implies that with probability at least 1/3, a randomly chosen edge
uv has at least one endpoint in some feedback vertex set of size k − |S|.
So, with probability at least 1

2 ·
1
3 = 1

6 , a randomly chosen endpoint of uv
belongs some feedback vertex set of size ≤ k − |S|.
Applying Theorem 4 gives a randomized FPT running time of O∗(6k).

S. Gaspers (UNSW) Randomized Algorithms 19T3 19 / 41

Proof

Proof.
We need to show: each time the algorithm adds a vertex v to S, if
(G− S, k − |S|) is a Yes-instance, then with probability at least 1/6, the
instance (G− (S ∪ {v}), k − |S| − 1) is also a Yes-instance. Then, by
induction, we can conclude that with probability 1/(6k), the algorithm finds a
feedback vertex set of size at most k if it is given a Yes-instance.

Assume (G− S, k − |S|) is a Yes-instance.

Lemma 6 implies that with probability at least 1/3, a randomly chosen edge
uv has at least one endpoint in some feedback vertex set of size k − |S|.
So, with probability at least 1

2 ·
1
3 = 1

6 , a randomly chosen endpoint of uv
belongs some feedback vertex set of size ≤ k − |S|.

Applying Theorem 4 gives a randomized FPT running time of O∗(6k).

S. Gaspers (UNSW) Randomized Algorithms 19T3 19 / 41

Proof

Proof.
We need to show: each time the algorithm adds a vertex v to S, if
(G− S, k − |S|) is a Yes-instance, then with probability at least 1/6, the
instance (G− (S ∪ {v}), k − |S| − 1) is also a Yes-instance. Then, by
induction, we can conclude that with probability 1/(6k), the algorithm finds a
feedback vertex set of size at most k if it is given a Yes-instance.

Assume (G− S, k − |S|) is a Yes-instance.

Lemma 6 implies that with probability at least 1/3, a randomly chosen edge
uv has at least one endpoint in some feedback vertex set of size k − |S|.
So, with probability at least 1

2 ·
1
3 = 1

6 , a randomly chosen endpoint of uv
belongs some feedback vertex set of size ≤ k − |S|.
Applying Theorem 4 gives a randomized FPT running time of O∗(6k).

S. Gaspers (UNSW) Randomized Algorithms 19T3 19 / 41

Improved analysis

Lemma 8
Let G be a multigraph with minimum degree at least 3. For every feedback vertex
set X, at least 1/2 of the edges of G have at least one endpoint in X.

Note: For a feedback vertex set X, consider the forest F := G−X. The
statement is equivalent to:

|E(G) \ E(F)| ≥ |E(F)|

Let J ⊆ E(G) denote the edges with one endpoint in X, and the other in V (F).
We will show the stronger result:

|J | ≥ |V (F)|

S. Gaspers (UNSW) Randomized Algorithms 19T3 20 / 41

Improved analysis

Lemma 8
Let G be a multigraph with minimum degree at least 3. For every feedback vertex
set X, at least 1/2 of the edges of G have at least one endpoint in X.

Note: For a feedback vertex set X, consider the forest F := G−X. The
statement is equivalent to:

|E(G) \ E(F)| ≥ |E(F)|

Let J ⊆ E(G) denote the edges with one endpoint in X, and the other in V (F).
We will show the stronger result:

|J | ≥ |V (F)|

S. Gaspers (UNSW) Randomized Algorithms 19T3 20 / 41

Improved analysis

Proof.
Let V≤1, V2, V≥3 be the set of vertices that have degree at most 1, exactly 2,
and at least 3, respectively, in F .

Since δ(G) ≥ 3, each vertex in V≤1 contributes at least 2 edges to J , and
each vertex in V2 contributes at least 1 edge to J .

We show that |V≥3| ≤ |V≤1| by induction on |V (F)|.
Trivially true for forests with at most 1 vertex.
Assume true for forests with at most n− 1 vertices.
For any forest on n vertices, consider removing a leaf (which must always
exist) to obtain F ′ with the vertex partition (V ′≤1, V

′
2 , V

′
≥3).

If |V≥3| = |V ′≥3|, then we have that |V≥3| = |V ′≥3| ≤ |V ′≤1| ≤ |V≥1|.
Otherwise, |V≥3| = |V ′≥3|+ 1 ≤ |V ′≤1|+ 1 = |V≤1|.

We conclude that:

|E(G) \ E(F)| ≥ |J | ≥ 2|V≤1|+ |V2| ≥ |V≤1|+ |V2|+ |V≥3| = |V (F)|

S. Gaspers (UNSW) Randomized Algorithms 19T3 21 / 41

Improved analysis

Proof.
Let V≤1, V2, V≥3 be the set of vertices that have degree at most 1, exactly 2,
and at least 3, respectively, in F .

Since δ(G) ≥ 3, each vertex in V≤1 contributes at least 2 edges to J , and
each vertex in V2 contributes at least 1 edge to J .

We show that |V≥3| ≤ |V≤1| by induction on |V (F)|.
Trivially true for forests with at most 1 vertex.
Assume true for forests with at most n− 1 vertices.
For any forest on n vertices, consider removing a leaf (which must always
exist) to obtain F ′ with the vertex partition (V ′≤1, V

′
2 , V

′
≥3).

If |V≥3| = |V ′≥3|, then we have that |V≥3| = |V ′≥3| ≤ |V ′≤1| ≤ |V≥1|.
Otherwise, |V≥3| = |V ′≥3|+ 1 ≤ |V ′≤1|+ 1 = |V≤1|.

We conclude that:

|E(G) \ E(F)| ≥ |J | ≥ 2|V≤1|+ |V2| ≥ |V≤1|+ |V2|+ |V≥3| = |V (F)|

S. Gaspers (UNSW) Randomized Algorithms 19T3 21 / 41

Improved analysis

Proof.
Let V≤1, V2, V≥3 be the set of vertices that have degree at most 1, exactly 2,
and at least 3, respectively, in F .

Since δ(G) ≥ 3, each vertex in V≤1 contributes at least 2 edges to J , and
each vertex in V2 contributes at least 1 edge to J .

We show that |V≥3| ≤ |V≤1| by induction on |V (F)|.
Trivially true for forests with at most 1 vertex.
Assume true for forests with at most n− 1 vertices.
For any forest on n vertices, consider removing a leaf (which must always
exist) to obtain F ′ with the vertex partition (V ′≤1, V

′
2 , V

′
≥3).

If |V≥3| = |V ′≥3|, then we have that |V≥3| = |V ′≥3| ≤ |V ′≤1| ≤ |V≥1|.
Otherwise, |V≥3| = |V ′≥3|+ 1 ≤ |V ′≤1|+ 1 = |V≤1|.

We conclude that:

|E(G) \ E(F)| ≥ |J | ≥ 2|V≤1|+ |V2| ≥ |V≤1|+ |V2|+ |V≥3| = |V (F)|

S. Gaspers (UNSW) Randomized Algorithms 19T3 21 / 41

Improved analysis

Proof.
Let V≤1, V2, V≥3 be the set of vertices that have degree at most 1, exactly 2,
and at least 3, respectively, in F .

Since δ(G) ≥ 3, each vertex in V≤1 contributes at least 2 edges to J , and
each vertex in V2 contributes at least 1 edge to J .

We show that |V≥3| ≤ |V≤1| by induction on |V (F)|.
Trivially true for forests with at most 1 vertex.
Assume true for forests with at most n− 1 vertices.
For any forest on n vertices, consider removing a leaf (which must always
exist) to obtain F ′ with the vertex partition (V ′≤1, V

′
2 , V

′
≥3).

If |V≥3| = |V ′≥3|, then we have that |V≥3| = |V ′≥3| ≤ |V ′≤1| ≤ |V≥1|.
Otherwise, |V≥3| = |V ′≥3|+ 1 ≤ |V ′≤1|+ 1 = |V≤1|.

We conclude that:

|E(G) \ E(F)| ≥ |J | ≥ 2|V≤1|+ |V2| ≥ |V≤1|+ |V2|+ |V≥3| = |V (F)|

S. Gaspers (UNSW) Randomized Algorithms 19T3 21 / 41

Improved Randomized Algorithm

Theorem 9

Feedback Vertex Set has a randomized algorithm with running time O∗(4k).

Note
This algorithmic method is applicable whenever the vertex set we seek is incident
to a constant fraction of the edges.

S. Gaspers (UNSW) Randomized Algorithms 19T3 22 / 41

Outline

1 Introduction

2 Vertex Cover

3 Feedback Vertex Set

4 Color Coding

5 Monotone Local Search

S. Gaspers (UNSW) Randomized Algorithms 19T3 23 / 41

Longest Path

Longest Path
Input: Graph G, integer k
Parameter: k
Question: Does G have a path on k vertices as a subgraph?

NP-complete

To show that Longest Path is NP-hard, reduce from Hamiltonian Path by
setting k = n and leaving the graph unchanged.

S. Gaspers (UNSW) Randomized Algorithms 19T3 24 / 41

Longest Path

Longest Path
Input: Graph G, integer k
Parameter: k
Question: Does G have a path on k vertices as a subgraph?

NP-complete

To show that Longest Path is NP-hard, reduce from Hamiltonian Path by
setting k = n and leaving the graph unchanged.

S. Gaspers (UNSW) Randomized Algorithms 19T3 24 / 41

Color Coding

Notation: [k] = {1, 2, . . . , k}

Lemma 10

Let U be a set of size n, and let X ⊆ U be a subset of size k. Let χ : U → [k] be
a coloring of the elements of U , chosen uniformly at random. Then the probability
that the elements of X are colored with pairwise distinct colors is at least e−k.

Proof.

There are kn possible colorings χ and k!kn−k of them are injective on X. Using
the inequality

k! > (k/e)k,

the lemma follows since

k! · kn−k

kn
>
kk · kn−k

ek · kn
= e−k.

S. Gaspers (UNSW) Randomized Algorithms 19T3 25 / 41

Color Coding

Notation: [k] = {1, 2, . . . , k}

Lemma 10

Let U be a set of size n, and let X ⊆ U be a subset of size k. Let χ : U → [k] be
a coloring of the elements of U , chosen uniformly at random. Then the probability
that the elements of X are colored with pairwise distinct colors is at least e−k.

Proof.

There are kn possible colorings χ and k!kn−k of them are injective on X. Using
the inequality

k! > (k/e)k,

the lemma follows since

k! · kn−k

kn
>
kk · kn−k

ek · kn
= e−k.

S. Gaspers (UNSW) Randomized Algorithms 19T3 25 / 41

Colorful Path

A path is colorful if all vertices of the path are colored with pairwise distinct colors.

Lemma 11

Let G be an undirected graph, and let χ : V (G)→ [k] be a coloring of its vertices
with k colors. There is an algorithm that checks in time O∗(2k) whether G
contains a colorful path on k vertices.

S. Gaspers (UNSW) Randomized Algorithms 19T3 26 / 41

Colorful Path II

Proof.

Partition V (G) into V1, ..., Vk subsets such that vertices in Vi are colored i.

Apply dynamic programming on nonempty S ⊆ {1, ..., k}. For u ∈
⋃

i∈S Vi let
P (S, u) = true if there is a colorful path with colors from S and u as an
endpoint. We have the following:

For |S| = 1, P (S, u) = true for u ∈ V (G) iff S = {χ(u)}.
For |S| > 1

P (S, u) =

{∨
uv∈E(G) P (S\{χ(u)}, v) if χ(u) ∈ S

false otherwise

All values of P can be computed in O∗(2k) time and there exists a colorful k-path
iff P ([k], v) is true for some vertex v ∈ V (G).

S. Gaspers (UNSW) Randomized Algorithms 19T3 27 / 41

Colorful Path II

Proof.

Partition V (G) into V1, ..., Vk subsets such that vertices in Vi are colored i.
Apply dynamic programming on nonempty S ⊆ {1, ..., k}. For u ∈

⋃
i∈S Vi let

P (S, u) = true if there is a colorful path with colors from S and u as an
endpoint.

We have the following:

For |S| = 1, P (S, u) = true for u ∈ V (G) iff S = {χ(u)}.
For |S| > 1

P (S, u) =

{∨
uv∈E(G) P (S\{χ(u)}, v) if χ(u) ∈ S

false otherwise

All values of P can be computed in O∗(2k) time and there exists a colorful k-path
iff P ([k], v) is true for some vertex v ∈ V (G).

S. Gaspers (UNSW) Randomized Algorithms 19T3 27 / 41

Colorful Path II

Proof.

Partition V (G) into V1, ..., Vk subsets such that vertices in Vi are colored i.
Apply dynamic programming on nonempty S ⊆ {1, ..., k}. For u ∈

⋃
i∈S Vi let

P (S, u) = true if there is a colorful path with colors from S and u as an
endpoint. We have the following:

For |S| = 1, P (S, u) = true for u ∈ V (G) iff S = {χ(u)}.
For |S| > 1

P (S, u) =

{∨
uv∈E(G) P (S\{χ(u)}, v) if χ(u) ∈ S

false otherwise

All values of P can be computed in O∗(2k) time and there exists a colorful k-path
iff P ([k], v) is true for some vertex v ∈ V (G).

S. Gaspers (UNSW) Randomized Algorithms 19T3 27 / 41

Colorful Path II

Proof.

Partition V (G) into V1, ..., Vk subsets such that vertices in Vi are colored i.
Apply dynamic programming on nonempty S ⊆ {1, ..., k}. For u ∈

⋃
i∈S Vi let

P (S, u) = true if there is a colorful path with colors from S and u as an
endpoint. We have the following:

For |S| = 1, P (S, u) = true for u ∈ V (G) iff S = {χ(u)}.
For |S| > 1

P (S, u) =

{∨
uv∈E(G) P (S\{χ(u)}, v) if χ(u) ∈ S

false otherwise

All values of P can be computed in O∗(2k) time and there exists a colorful k-path
iff P ([k], v) is true for some vertex v ∈ V (G).

S. Gaspers (UNSW) Randomized Algorithms 19T3 27 / 41

Longest Path

Theorem 12

Longest Path has a randomized algorithm with running time O∗((2 · e)k).

Note
This algorithmic method is applicable whenever we seek a vertex set S of size
f(k) such that G[S] has constant treewidth.

S. Gaspers (UNSW) Randomized Algorithms 19T3 28 / 41

Outline

1 Introduction

2 Vertex Cover

3 Feedback Vertex Set

4 Color Coding

5 Monotone Local Search

S. Gaspers (UNSW) Randomized Algorithms 19T3 29 / 41

Exponential-time algorithms and parameterized algorithms

Exponential-time algorithms

Algorithms for NP-hard problems

Beat brute-force & improve

Running time measured in the size
of the universe n

O(2n · n), O(1.5086n), O(1.0892n)

Parameterized algorithms

Algorithms for NP-hard problems

Use a parameter k
(often k is the solution size)

Algorithms with running time
f(k) · nc

kknO(1), 5knO(1), O(1.2738k +kn)

Can we use Parameterized algorithms to design fast Exponential-time algorithms?

S. Gaspers (UNSW) Randomized Algorithms 19T3 30 / 41

Example: Feedback Vertex Set

S ⊆ V is a feedback vertex set in a graph G = (V,E) if G− S is acyclic.

Feedback Vertex Set
Input: Graph G = (V,E), integer k
Parameter: k
Question: Does G have a feedback vertex set of size

at most k?

Exponential-time algorithms

O∗(2n) trivial

O(1.7548n) [Fom+08]

O(1.7347n) [FV10]

O(1.7266n) [XN15]

Parameterized algorithms

O∗((17k4)!) [Bod94]

O∗((2k + 1)k) [DF99]
...

O∗(3.460k) deterministic [IK19]

O∗(2.7k) randomized [LN19]

S. Gaspers (UNSW) Randomized Algorithms 19T3 31 / 41

Example: Feedback Vertex Set

S ⊆ V is a feedback vertex set in a graph G = (V,E) if G− S is acyclic.

Feedback Vertex Set
Input: Graph G = (V,E), integer k
Parameter: k
Question: Does G have a feedback vertex set of size

at most k?

Exponential-time algorithms

O∗(2n) trivial

O(1.7548n) [Fom+08]

O(1.7347n) [FV10]

O(1.7266n) [XN15]

Parameterized algorithms

O∗((17k4)!) [Bod94]

O∗((2k + 1)k) [DF99]
...

O∗(3.460k) deterministic [IK19]

O∗(2.7k) randomized [LN19]

S. Gaspers (UNSW) Randomized Algorithms 19T3 31 / 41

Exponential-time algorithms via parameterized algorithms

Binomial coefficients

arg max
0≤k≤n

(
n

k

)
= n/2 and

(
n

n/2

)
= Θ(2n/

√
n)

Algorithm for Feedback Vertex Set

Set t = 0.60909 · n
If k ≤ t, run O∗(3k) algorithm

Else check all

(
n

k

)
vertex subsets of size k

Running time: O∗
(

max

(
3t,

(
n

t

)))
= O∗(1.9526n)

This approach gives algorithms faster than O∗(2n) for subset problems with a
parameterized algorithm faster than O∗(4k).

S. Gaspers (UNSW) Randomized Algorithms 19T3 32 / 41

Exponential-time algorithms via parameterized algorithms

Binomial coefficients

arg max
0≤k≤n

(
n

k

)
= n/2 and

(
n

n/2

)
= Θ(2n/

√
n)

Algorithm for Feedback Vertex Set

Set t = 0.60909 · n
If k ≤ t, run O∗(3k) algorithm

Else check all

(
n

k

)
vertex subsets of size k

Running time: O∗
(

max

(
3t,

(
n

t

)))
= O∗(1.9526n)

This approach gives algorithms faster than O∗(2n) for subset problems with a
parameterized algorithm faster than O∗(4k).

S. Gaspers (UNSW) Randomized Algorithms 19T3 32 / 41

Exponential-time algorithms via parameterized algorithms

Binomial coefficients

arg max
0≤k≤n

(
n

k

)
= n/2 and

(
n

n/2

)
= Θ(2n/

√
n)

Algorithm for Feedback Vertex Set

Set t = 0.60909 · n
If k ≤ t, run O∗(3k) algorithm

Else check all

(
n

k

)
vertex subsets of size k

Running time: O∗
(

max

(
3t,

(
n

t

)))
= O∗(1.9526n)

This approach gives algorithms faster than O∗(2n) for subset problems with a
parameterized algorithm faster than O∗(4k).

S. Gaspers (UNSW) Randomized Algorithms 19T3 32 / 41

Subset Problems

An implicit set system is a function Φ with:

Input: instance I ∈ {0, 1}∗, |I| = N

Output: set system (UI ,FI):

universe UI , |UI | = n
family FI of subsets of UI

Φ-Subset
Input: Instance I
Question: Is |FI | > 0?

Φ-Extension
Input: Instance I, a set X ⊆ UI , and an integer k
Question: Does there exist a subset S ⊆ (UI\X) such that S ∪X ∈ FI and

|S| ≤ k?

S. Gaspers (UNSW) Randomized Algorithms 19T3 33 / 41

Subset Problems

An implicit set system is a function Φ with:

Input: instance I ∈ {0, 1}∗, |I| = N

Output: set system (UI ,FI):

universe UI , |UI | = n
family FI of subsets of UI

Φ-Subset
Input: Instance I
Question: Is |FI | > 0?

Φ-Extension
Input: Instance I, a set X ⊆ UI , and an integer k
Question: Does there exist a subset S ⊆ (UI\X) such that S ∪X ∈ FI and

|S| ≤ k?

S. Gaspers (UNSW) Randomized Algorithms 19T3 33 / 41

Subset Problems

An implicit set system is a function Φ with:

Input: instance I ∈ {0, 1}∗, |I| = N

Output: set system (UI ,FI):

universe UI , |UI | = n
family FI of subsets of UI

Φ-Subset
Input: Instance I
Question: Is |FI | > 0?

Φ-Extension
Input: Instance I, a set X ⊆ UI , and an integer k
Question: Does there exist a subset S ⊆ (UI\X) such that S ∪X ∈ FI and

|S| ≤ k?

S. Gaspers (UNSW) Randomized Algorithms 19T3 33 / 41

Algorithm

Suppose Φ-Extension has a O∗(ck) time algorithm B.

Algorithm for checking whether FI contains a set of size k

Set t = max
(

0, ck−nc−1

)
Uniformly at random select a subset X ⊆ UI of size t

Run B(I,X, k − t)

Running time: [Fom+19]

O∗

((
n
t

)(
k
t

) · ck−t) = O∗
(

2− 1

c

)n

S. Gaspers (UNSW) Randomized Algorithms 19T3 34 / 41

Algorithm

Suppose Φ-Extension has a O∗(ck) time algorithm B.

Algorithm for checking whether FI contains a set of size k

Set t = max
(

0, ck−nc−1

)
Uniformly at random select a subset X ⊆ UI of size t

Run B(I,X, k − t)

Running time: [Fom+19]

O∗

((
n
t

)(
k
t

) · ck−t) = O∗
(

2− 1

c

)n

S. Gaspers (UNSW) Randomized Algorithms 19T3 34 / 41

Intuition

Brute-force randomized algorithm

Pick k elements of the universe one-by-one.

Suppose FI contains a set of size k.

Success probability:

k

n
· k − 1

n− 1
· ...·k − t

n− t
· ... · 2

n− (k − 2)

1

n− (k − 1)
=

1(
n
k

)
=

1

c

S. Gaspers (UNSW) Randomized Algorithms 19T3 35 / 41

Randomized Monotone Local Search

Theorem 13 ([Fom+19])

If there exists a (randomized) algorithm for Φ-Extension with running time
O∗(ck) then there exists a randomized algorithm for Φ-Subset with running time
(2− 1

c)n ·NO(1).

Theorem 14 ([Fom+19])

Feedback Vertex Set has a randomized algorithm with running time
O∗
((

2− 1
2.7

)n) ⊆ O(1.6297n).

S. Gaspers (UNSW) Randomized Algorithms 19T3 36 / 41

Randomized Monotone Local Search

Theorem 13 ([Fom+19])

If there exists a (randomized) algorithm for Φ-Extension with running time
O∗(ck) then there exists a randomized algorithm for Φ-Subset with running time
(2− 1

c)n ·NO(1).

Theorem 14 ([Fom+19])

Feedback Vertex Set has a randomized algorithm with running time
O∗
((

2− 1
2.7

)n) ⊆ O(1.6297n).

S. Gaspers (UNSW) Randomized Algorithms 19T3 36 / 41

Derandomization

Derandomization at the expense of a subexponential factor in the running time.

Theorem 15 ([Fom+19])

If there exists an algorithm for Φ-Extension with running time O∗(ck) then
there exists an algorithm for Φ-Subset with running time (2− 1

c)n+o(n) ·NO(1).

Theorem 16 ([Fom+19])

Feedback Vertex Set has an algorithm with running time
O∗
((

2− 1
3.460

)n) ⊆ O(1.7110n).

S. Gaspers (UNSW) Randomized Algorithms 19T3 37 / 41

Derandomization

Derandomization at the expense of a subexponential factor in the running time.

Theorem 15 ([Fom+19])

If there exists an algorithm for Φ-Extension with running time O∗(ck) then
there exists an algorithm for Φ-Subset with running time (2− 1

c)n+o(n) ·NO(1).

Theorem 16 ([Fom+19])

Feedback Vertex Set has an algorithm with running time
O∗
((

2− 1
3.460

)n) ⊆ O(1.7110n).

S. Gaspers (UNSW) Randomized Algorithms 19T3 37 / 41

Further Reading

Chapter 5, Randomized methods in parameterized algorithms by [Cyg+15]

Exact Algorithms via Monotone Local Search [Fom+19]

S. Gaspers (UNSW) Randomized Algorithms 19T3 38 / 41

References I

I [Bod94] Hans L. Bodlaender. “On Disjoint Cycles”. In: International Journal
of Foundations of Computer Science 5.1 (1994), pp. 59–68.

I [Cyg+15] Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov,
Dániel Marx, Marcin Pilipczuk, Micha l Pilipczuk, and Saket Saurabh.
Parameterized Algorithms. Springer, 2015.

I [DF99] Rodney G. Downey and Michael R. Fellows. Parameterized
Complexity. Monographs in Computer Science. New York: Springer,
1999.

I [FV10] Fedor V. Fomin and Yngve Villanger. “Finding Induced Subgraphs via
Minimal Triangulations”. In: Proceedings of the 27th International
Symposium on Theoretical Aspects of Computer Science (STACS
2010). Vol. 5. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum fuer
Informatik, 2010, pp. 383–394.

S. Gaspers (UNSW) Randomized Algorithms 19T3 39 / 41

References II

I [Fom+08] Fedor V. Fomin, Serge Gaspers, Artem V. Pyatkin, and Igor Razgon.
“On the minimum feedback vertex set problem: exact and
enumeration algorithms”. In: Algorithmica 52.2 (2008), pp. 293–307.
issn: 0178-4617.

I [Fom+19] Fedor V. Fomin, Serge Gaspers, Daniel Lokshtanov, and
Saket Saurabh. “Exact Algorithms via Monotone Local Search”. In:
Journal of the ACM 66.2 (2019), 8:1–8:23.

I [IK19] Yoichi Iwata and Yusuke Kobayashi. Improved Analysis of
Highest-Degree Branching for Feedback Vertex Set. Tech. rep.
abs/1905.12233. arXiv CoRR, 2019. url:
http://arxiv.org/abs/1905.12233.

I [LN19] Jason Li and Jesper Nederlof. Detecting Feedback Vertex Sets of Size
k in O∗(2.7k) Time. Tech. rep. abs/1906.12298. arXiv CoRR, 2019.
url: http://arxiv.org/abs/1906.12298.

S. Gaspers (UNSW) Randomized Algorithms 19T3 40 / 41

http://arxiv.org/abs/1905.12233
http://arxiv.org/abs/1906.12298

References III

I [XN15] Mingyu Xiao and Hiroshi Nagamochi. “An improved exact algorithm
for undirected feedback vertex set”. In: Journal of Combinatorial
Optimization 30.2 (2015), pp. 214–241.

S. Gaspers (UNSW) Randomized Algorithms 19T3 41 / 41

	Introduction
	Vertex Cover
	Feedback Vertex Set
	Color Coding
	Monotone Local Search
	References

