
1

COMP2121: Microprocessors and
Interfacing

AVR Assembler

http://www.cse.unsw.edu.au/~cs2121

Lecturer: Hui Wu

Term 2, 2019

2

Contents

• Pseudo instructions of AVR Assembler

• AVR assembly program structure

1

2

2

3

Assembly Language

• Low-level programming language for specific processors

 Can only be executed on a target processor

• An textual representation of the machine language with
additional non-machine instructions (directives and pseudo
instructions)

• Typically more efficient than high level programming
languages such as Java in terms of running time and code
size, but much less efficient in terms of programming
speed

 Only used in low level programming such as
writing driver code.

4

Assembly Language Format

An input line takes one of the following forms :

[label:] directive [operands] [Comment]
[label:] instruction [operands] [Comment]
Comment
Empty line

A comment has the following form:

; [Text]

Items placed in braces are optional. The text between the
comment-delimiter (;) and the end of line (EOL) is ignored
by the Assembler.

3

4

3

5

Memory Segments (1/2)

An AVR assembly program consists of three parts:

• Code segment

 It defines code (instructions) and constants.

 It is stored in FLASH memory.

 It is declared by the AVR assembler directive .cseg

An AVR assembly program can have more than one code segments

 The AVR assembler directive .org is used to specify the starting address
of a code segment.

 The default starting address of the code segment is 0.

6

Memory Segments (2/2)

• Data segment

 It defines data.

 It is stored in the SRAM.

 It is declared by the AVR assembler directive .dseg

An AVR assembly program can have more than one data segments

 The AVR assembler directive .org is used to specify the starting address
of a code segment

 The default starting address of the data segment is 0x60.

• EEPROM segment.

 It is declared by the AVR assembler directive .eseg

 It is used to store system parameters.

 It is stored in in EEPROM.

 It will not be covered in this course.

5

6

4

7

User Defined Labels

• A user defined label is used to denote the memory location
(address) of an instruction or a data item, and can be used in
instructions to reference the instruction or the data item.

• Examples:

.dseg

amount:.byte 2

.cseg

formula: inc r0

.dseg

count: .byte 2

where amount, formula, and count are user defined labels. Note that
there is a colon after a label.

8

• From AVR
Studio
Help

• These are
for the AVR
Studio
Assembler

Directive Description

BYTE Reserve byte to a variable

CSEG Code Segment

CSEGSIZE Program memory size

DB Define constant byte(s)

DEF Define a symbolic name on a register

DEVICE Define which device to assemble for

DSEG Data Segment

DW Define Constant word(s)

ENDM, ENDMACRO End macro

EQU Set a symbol equal to an expression

ESEG EEPROM Segment

EXIT Exit from file

INCLUDE Read source from another file

LIST Turn listfile generation on

LISTMAC Turn Macro expansion in list file on

MACRO Begin macro

NOLIST Turn listfile generation off

ORG Set program origin

SET Set a symbol to an expression

Pseudo
Instructions

7

8

5

9

Typical Pseudo Instructions (1/6)

• .byte: Reserve space; only allowed in dseg

.desg

var1: .byte 4 ; reserve 4 byte to var1

• Segment directives .cseg and .dseg allow the text and
data segments to be built up in pieces:

.dseg

amount: .byte 2

.cseg

formula: inc r0

.dseg

count: .byte 2

10

Typical Pseudo Instructions (2/6)

• .db: Initialize constant in code or EEPROM segment

• Each constant occupies one byte.

.cseg

initialvalues: .db 10, 25, 0b01010101, -128, 0xf0

• .dw: As above but defines a 16-bit word

• Each constant occupies one word (two bytes).

.cseg

initialvalues: .dw 10, 25, 0b01010101, -128, 0xf0

9

10

6

11

Typical Pseudo Instructions (3/6)

• .org: Set program origin

• The ORG directive sets the location counter to an
absolute value.

 If the directive is given within a Data Segment, then it is
the SRAM location counter which is set.

 If the directive is given within a Code Segment, then it is
the Program memory counter which is set.

 If the directive is given within an EEPROM Segment, then
it is the EEPROM location counter which is set.

 If the directive is preceded by a label (on the same source
code line), the label will be given the value of the
parameter.

12

Typical Pseudo Instructions (4/6)

 The default values of the Code and EEPROM location
counters are zero, whereas the default value of the SRAM
location counter is 32 (due to the registers occupying
addresses 0-31) when the assembling is started.

.dseg ; Start data segment

.org 0xf0 ; Set SRAM address to 0xf0

var: .BYTE 4 ; Reserve 4 bytes at SRAM address 0xf0

.ESEG ; Start EEPROM Segment

.org 0x20 ; Set EEPROM location counter

eevar: .DW 0xf068 ; Initialize one word

.cseg

.org 0x10 ; Set Program Counter to hex10

inc r0 ; Increment r0

11

12

7

13

Typical Pseudo Instructions (5/6)

• .def: Define a symbolic name on a register
.def divisor=r20
.def quotient=r31

• .equ: Set a symbol equal to an expression
 The EQU directive assigns a value to a label. This label can be used

in expressions later. A label assigned to a value by the EQU
directive is a constant and can not be changed or redefined.

.EQU max = 0x200

.EQU min = 2

.CSEG ; Start code segment
clr r2 ; Clear register 2

14

Typical Pseudo Instructions (6/6)

• .set: Set a symbol to equal to an expression
 The SET directive assigns a value to a label. This label can then be

used in later expressions. A label assigned to a value by the SET
directive can be changed later in the program.

.set max = 0x200

.set min = 2

• .device: Specify the exact microcontroller that this program
is designed for
.device AT90S8515

Prohibits use of non-implemented instructions

• .macro, .endm: Begin and end macro definition
• .include: Include a file

13

14

8

15

Expressions

• Expressions can consist of operands, operators and
functions. All expressions are internally 32 bits long.

• Example:
ldi r26, low(label + 0xff0)

Function Operands Operator

16

Operands

• User defined labels which are given the value of the
location counter at the place they appear.
• User defined symbols defined by the SET directive
• User defined constants defined by the EQU directive
• Integer constants: constants can be given in several
formats, including
 Decimal (default): 10, 255
 Hexadecimal (two notations): 0x0a, $0a, 0xff, $ff
 Binary: 0b00001010, 0b11111111
 Octal (leading zero): 010, 077

• PC - the current value of the Program memory
location counter.

15

16

9

17

Operators
Symbol Description
! Logical Not
~ Bitwise Not
- Unary Minus
* Multiplication
/ Division
+ Addition
- Subtraction
<< Shift left
>> Shift right
< Less than
<= Less than or equal
> Greater than
>= Greater than or equal
== Equal
!= Not equal
& Bitwise And
^ Bitwise Xor
| Bitwise Or
&& Logical And
|| Logical Or

Same
meanings

as in c

18

Functions (1/2)

• LOW(expression): Returns the low byte of an expression
• HIGH(expression): Returns the second byte of an expression
• BYTE2(expression): The same function as HIGH
• BYTE3(expression): Returns the third byte of an expression
• BYTE4(expression): Returns the fourth byte of an expression
• LWRD(expression): Returns bits 0-15 of an expression
• HWRD(expression): Returns bits 16-31 of an expression
• PAGE(expression): Returns bits 16-21 of an expression
• EXP2(expression): Returns 2 to the power of expression
• LOG2(expression): Returns the integer part of log2(expression)

17

18

10

19

Functions (2/2)

• Examples:

cp r0, low(-13167)
cpc r1, high(-13167)
brlt case1

…
case1: inc r10

…

20

An Complete Example (1/2)

; This program converts the string “hello” stored in the program memory
; into the string “HELLO” stored in the data memory

.include "m64def.inc"

.equ size =5

.def counter =r17

.dseg ; Data segment

.org 0x100 ; Set the starting address of data segment to 0x100
Cap_string: .byte 5 ; Allocate 5 bytes of data memory to store “HELLO”

.cseg ; Code segment
Low_string: .db "hello“ ; “hello” is stored in the program memory

ldi zl, low(Low_string<<1) ; load the low byte of
; the address of "h“ into zl

ldi zh, high(Low_string<<1) ; load the high byte of
; the address of "h“ into zh

19

20

11

21

An Complete Example (2/2)

ldi yh, high(Cap_string) ; load the high byte of the starting address of
; the capital string “HELLO”

ldi yl, low(Cap_string) ; load the low byte of the starting address of
; “HELLO”

clr counter ; counter=0
main:

lpm r20, z+ ; load a letter from the program (flash) memory
subi r20, 32 ; convert it to the capital letter
st y+,r20 ; store the capital letter in SRAM (data memory)
inc counter ; increment counter
cpi counter, size ; check the exit condition of the loop
brlt main

loop: rjmp loop ; there must be an infinite loop at the end of each
; program. Otherwise, the program will go wild (PC will
; point to an invalid instruction)

22

Reading

1. AVR Assembler Guide
(http://www.cse.unsw.edu.au/~cs2121/AVR)

21

22

