
Tools of the Trade
Software Engineering @ Nine Publishing



Who am I?

George Wright

Technology Director - Metro Publishing

Nine Publishing

I am responsible for a delivery team that 
provides a core platform.



I apologise in advance

● Software architecture is evolving rapidly and is extremely diverse.
● There are no right answers!
● Technology is very cyclical in nature 

○ thin client -> fat client -> thin client
○ Centralised -> decentralised

● One area that seems to have more accepted is that open standards has won.



Software Development

The CRAFT of software

● part engineering - accuracy and efficiency
● part designing - elegance
● part project managing - accountable
● part poetry - expressive
● part team sport - collaborative



Microservices are the new norm.

● Engineering for interoperability is key.
● No one technology is the silver bullet.
● Automated testing.
● Continuous Integration/Deployment.
● Serverless where possible. OUTDATED??
● No longer a monoculture approach. OUTDATED??
● Is event sourcing next?



the “Stack”

All of the systems and services that fulfil a request (end-to-end) - in this case a 
request from a web client.

The stack is the largest box you can draw around the things you can 
control/influence.



Stack basics

Internet

Browsers

Bots

Services

Understand the usage patterns

“THEM” “US”

● Web servers
● DNS
● Queues
● Cache
● Databases
● Load Balancers
● Operating Systems
● Deployers
● Applications
● Analytics
● Source Control
● Quality Assurance / 

Automated testing



Stack Shopping



The “Corporate” stack

Proxies & Cache (MS Forefront, Java Caching System, Squid)

DNS & Load Balancing (Windows Server NLB, Apache Camel) 

Web Server (IIS, Apache)

Application Server (Tomcat, JBoss, GlassFish, IIS .Net)

Application (Java, .Net)

Corba, 
WSDL, 
RPC, 
SOAP

Database (SQLServer, Oracle)



The “hipster” stack

MEAN stands for:
MongoDB is the leading NoSQL database, empowering businesses 
to be more agile and scalable.

Express is a minimal and flexible node.js web application 
framework, providing a robust set of features for building single 
and multi-page, and hybrid web applications.

AngularJS lets you extend HTML vocabulary for your application. 
The resulting environment is extraordinarily expressive, readable, 
and quick to develop.

Node.js is a platform built on Chrome's JavaScript runtime for 
easily building fast, scalable network applications.

http://mean.io/#!



Re-Platform

Language: GoLang

Release Pipeline: Concourse

Runtime environment: Docker/Kubernetes

Message Streaming: AWS Kinesis

API Contract: GraphQL, gRPC

DOM rendering: React



Microservices

Render 
Endpoint

Publishing API

Content API Weather API Comments API...

Akamai (cache)



Amazon AWS

● Compute (EC2, Lambda) - 
processing

● Elastic Load Balancer
● Storage (S3/Glacier)
● Database 

(DynamoDB/RDS/Redshift)
● In Mem. Cache (Elasticache)
● DNS (Amazon Route53)
● Web Cache (CloudFront)
● Queues (SQS)

● Notification (SNS, SES)
● Streaming (Kinesis)
● Analytics (EMR)
● Applications (ElasticBeanStalk)

+ Many, many more.

Rethinking the architecture at scale:



Alternatives

Application Hosting - Heroku, EngineYard, OpenShift, Google Cloud Platform, 
Microsoft Azure, Joyent + new entrants every day.

Check out DigitalOcean tutorials

https://www.digitalocean.com/community/tutorial_series



The Browser “Basics”

● HTML5 
● CSS3
● Javascript - JQuery(?), Modernizr
● Debugging - FireBug, Chrome Dev Tools
● JSON - CORS and JSONP
● REST



Frontend Stack provides:

● Package Management
● Templating
● Testing framework
● Common widgets
● Databinding
● Server communication



Developer stack

Every developer should have their own personal productivity 
stack including:

● Editor - Notepad++, Atom, Sublime, vim etc.
● IDE - Visual Studio, JetBrain, Netbeans, Eclipse
● Version Control - git, mercurial, bzr, cvs, svn
● Repository - gitorious, github, bitbucket, launchpad
● Issue tracking - JIRA, Redmine, Bugzilla
● Agile/SCRUM - Greenhopper, Trello



Quality assurance stack

● Automated testing eg. Mocha, Jasmine, Selenium etc.
● User acceptance testing tools
● Production monitoring
● Incident management
● Disaster recovery plan
● Peer reviewed documentation
● Stakeholder management
● Legal sign-off(?)



Advice for new developers

● Code is disposable but features are not!
● Excellentia (scale) vs perfectio (absolute). Write “Excellent” code over 

“Perfect” code
● Practice Fermi Estimation techniques.
● Understand the difference between classical Criticism and criticism.
● Right tool for the right job.
● Participate.
● Stay up to date with the trends.



Questions?

Thank you UNSW


