Exercise sheet 9 - Solutions
 COMP6741: Parameterized and Exact Computation

Serge Gaspers

Semester 2, 2017

Exercise 1. A domatic k-partition of a graph $G=(V, E)$ is a partition $\left(D_{1}, \ldots, D_{k}\right)$ of V into k dominating sets of G.

```
(sol+tw)-Domatic Partition
    Input: graph G, integer k
    Parameter: }k+\operatorname{tw}(G
    Question: Does G have a domatic k-partition.
```

- Show that (sol+tw)-Domatic Partition is FPT using Courcelle's theorem

Solution. To show that (sol+tw)-Domatic Partition is FPT, we express it as an MSO sentence which is true for the input graph G if and only if G has a domatic k-partition:

$$
\begin{aligned}
\exists D_{1} \subseteq V \exists D_{2} \subseteq V \ldots \exists D_{k} \subseteq V & \text { partition }\left(D_{1}, D_{2}, \ldots, D_{k}\right) \wedge \\
& \forall v \in V \operatorname{dom}\left(v, D_{1}\right) \wedge \cdots \wedge \operatorname{dom}\left(v, D_{k}\right)
\end{aligned}
$$

with

$$
\begin{aligned}
\operatorname{partition}\left(D_{1}, \ldots, D_{k}\right):=\forall v \in V & \left(v \in D_{1} \wedge v \notin D_{2} \wedge v \notin D_{3} \wedge \cdots \wedge v \notin D_{k}\right) \vee \\
& \left(v \notin D_{1} \wedge v \in D_{2} \wedge v \notin D_{3} \wedge \cdots \wedge v \notin D_{k}\right) \vee \\
& \cdots \\
& \left(v \notin D_{1} \wedge v \notin D_{2} \wedge v \notin D_{3} \wedge \cdots \wedge v \in D_{k}\right)
\end{aligned}
$$

and

$$
\operatorname{dom}(v, X):=v \in X \vee \exists x \in X \operatorname{adj}(v, w)
$$

The length of this expression is $O\left(k^{2}\right)$. Since this is a parameterized reduction to Courcelle's problem, the result follows.

Exercise 2. Show that the incidence treewidth of a CNF formula F is at most the dual treewidth of F plus 1 .
Solution. Start from a tree decomposition (T, γ) of the dual graph of F with minimum width. For each variable v in F, select a bag i_{v} that contains all the clauses where v occurs. Such a bag necessarily exists, since these clauses form a clique in the dual graph. Add a new bag containing v and all the clauses where v occurs, and make this bag adjacent to i_{v}. This gives a tree decomposition for the incidence graph of F whose width equals the width of the tree decomposition of the dual graph plus one.

Exercise 3. Show that CSP is $\mathrm{W}[1]$-hard for parameter incidence treewidth and Boolean domain $(D=\{0,1\})$.
Hints. Reduce from Clique.
(1) Use Boolean variables $x_{i j}$ with $1 \leq i \leq k$ and $1 \leq j \leq n$ with the meaning that $x_{i j}$ is set to 1 if the i th vertex of the clique corresponds to the j th vertex in the graph.
(2) Add $O\left(k^{2}\right)$ constraints enforcing that for each $i \in\{1, \ldots, k\}$, exactly one $x_{i j}$ is set to 1 , and whenever two $x_{i j}, x_{i^{\prime} j^{\prime}}$ with $i \neq i^{\prime}$ are set to 1 , then vertices j and j^{\prime} are adjacent in the graph.
(3) Show that a graph with a vertex cover of size q has treewidth at most q.

Exercise 4. Design an $O^{*}\left(2^{t}\right)$ time DP algorithm for tw-Independent Set.

```
tw-IndEPENDENT SET
    Input: Graph G, integer k, and a tree decomposition of G of width t
    Parameter: t
    Question: Does G have an independent set of size k?
```


Solution sketch.

- Obtain a nice tree decomposition (T, γ) of width t in polynomial time.
- Denote T_{i} the subtree of T rooted at node i
- Denote $\gamma_{\downarrow}(i)=\left\{v \in \gamma(j): j \in V\left(T_{i}\right)\right\}$ and $G_{\downarrow}(i)=G\left[\gamma_{\downarrow}(i)\right]$
- For each node i of T, and each $S \subseteq \gamma(i)$, compute $\operatorname{ind}(i, S)$, the size of a largest independent set of $G_{\downarrow}(i)$ that contains all vertices of S and no vertex from $\gamma(i) \backslash S$ by dynamic programming.
- For a leaf node i with $\gamma(i)=\{v\}$:

$$
\begin{aligned}
\operatorname{ind}(i, \emptyset) & =0 \\
\operatorname{ind}(i,\{v\}) & =1
\end{aligned}
$$

- For a forget node i with child i^{\prime} and $\gamma(i)=\gamma\left(i^{\prime}\right) \backslash\{v\}$:

$$
\operatorname{ind}(i, S)=\max \left(\operatorname{ind}\left(i^{\prime}, S\right), \operatorname{ind}\left(i^{\prime}, S \cup\{v\}\right)\right.
$$

- For an introduce node i with child i^{\prime} and $\gamma(i)=\gamma\left(i^{\prime}\right) \cup\{v\}$:

$$
\operatorname{ind}(i, S)= \begin{cases}-\infty & \text { if } G[S] \text { contains an edge } \\ \operatorname{ind}\left(i^{\prime}, S \backslash\{v\}\right)+[1 \text { if } v \in S] & \text { otherwise }\end{cases}
$$

- For a join node i with children i^{\prime} and $i^{\prime \prime}$:

$$
\operatorname{ind}(i, S)=\operatorname{ind}\left(i^{\prime}, S\right)+\operatorname{ind}\left(i^{\prime \prime}, S\right)-|S|
$$

Exercise 5. Design an $O^{*}\left(9^{t}\right)$ time DP algorithm for tw-Dominating Set. Can you even achieve an $O^{*}\left(4^{t}\right)$ time DP algorithm?

```
tw-DominAting Set
    Input: Graph G, integer k, and a tree decomposition of G of width at most t
    Parameter: t
    Question: Does G have a dominating set of size k?
```


Solution sketch.

- Obtain a nice tree decomposition (T, γ) of width t in polynomial time.
- Denote T_{i} the subtree of T rooted at node i
- Denote $\gamma_{\downarrow}(i)=\left\{v \in \gamma(j): j \in V\left(T_{i}\right)\right\}$
- Denote $G_{\downarrow}(i)=G\left[\gamma_{\downarrow}(i)\right]$
- For each node i of T, and each labelling $\ell: \gamma(i) \rightarrow\{$ in, outDom, out $N d\}$, compute the smallest size of a subset D of $\gamma_{\downarrow}(i)$ such that $D \cap \gamma(i)$ is the set of vertices labelled $i n$ by ℓ, and that dominates all vertices from $\gamma_{\downarrow}(i)$ except those that are labeled out $N d$ by ℓ by dynamic programming.

The running time depends on how join nodes are handled. See Section 10.5 in the [Niedermeier, '06] textbook for details.

