Exercise sheet 9 – Solutions COMP6741: Parameterized and Exact Computation

Serge Gaspers

Semester 2, 2017

Exercise 1. A domatic k-partition of a graph G = (V, E) is a partition (D_1, \ldots, D_k) of V into k dominating sets of G.

(sol+tw)-Domatic Partition		
Input:	graph G , integer k	
Parameter:	$k + \operatorname{tw}(G)$	Ì
Question:	Does G have a domatic k -partition.	

• Show that (sol+tw)-DOMATIC PARTITION is FPT using Courcelle's theorem

Solution. To show that (sol+tw)-DOMATIC PARTITION is FPT, we express it as an MSO sentence which is true for the input graph G if and only if G has a domatic k-partition:

$$\exists D_1 \subseteq V \exists D_2 \subseteq V \dots \exists D_k \subseteq V \quad partition(D_1, D_2, \dots, D_k) \land \\ \forall v \in V \ dom(v, D_1) \land \dots \land dom(v, D_k)$$

with

$$partition(D_1, \dots, D_k) := \forall v \in V \ (v \in D_1 \land v \notin D_2 \land v \notin D_3 \land \dots \land v \notin D_k) \lor (v \notin D_1 \land v \in D_2 \land v \notin D_3 \land \dots \land v \notin D_k) \lor \dots (v \notin D_1 \land v \notin D_2 \land v \notin D_3 \land \dots \land v \notin D_k)$$

and

$$dom(v, X) := v \in X \lor \exists x \in X \ adj(v, w)$$

The length of this expression is $O(k^2)$. Since this is a parameterized reduction to Courcelle's problem, the result follows.

Exercise 2. Show that the incidence treewidth of a CNF formula F is at most the dual treewidth of F plus 1. **Solution.** Start from a tree decomposition (T, γ) of the dual graph of F with minimum width. For each variable v in F, select a bag i_v that contains all the clauses where v occurs. Such a bag necessarily exists, since these clauses form a clique in the dual graph. Add a new bag containing v and all the clauses where v occurs, and make this bag adjacent to i_v . This gives a tree decomposition for the incidence graph of F whose width equals the width of the tree decomposition of the dual graph plus one.

Exercise 3. Show that CSP is W[1]-hard for parameter incidence treewidth and Boolean domain $(D = \{0, 1\})$. **Hints.** Reduce from CLIQUE.

(1) Use Boolean variables x_{ij} with $1 \le i \le k$ and $1 \le j \le n$ with the meaning that x_{ij} is set to 1 if the *i*th vertex of the clique corresponds to the *j*th vertex in the graph.

(2) Add $O(k^2)$ constraints enforcing that for each $i \in \{1, ..., k\}$, exactly one x_{ij} is set to 1, and whenever two $x_{ij}, x_{i'j'}$ with $i \neq i'$ are set to 1, then vertices j and j' are adjacent in the graph.

(3) Show that a graph with a vertex cover of size q has treewidth at most q.

Exercise 4. Design an $O^*(2^t)$ time DP algorithm for tw-INDEPENDENT SET.

tw-INDEPENDENT SET

Input:Graph G, integer k, and a tree decomposition of G of width tParameter:tQuestion:Does G have an independent set of size k?

Solution sketch.

- Obtain a nice tree decomposition (T, γ) of width t in polynomial time.
- Denote T_i the subtree of T rooted at node i
- Denote $\gamma_{\downarrow}(i) = \{v \in \gamma(j) : j \in V(T_i)\}$ and $G_{\downarrow}(i) = G[\gamma_{\downarrow}(i)]$
- For each node *i* of *T*, and each $S \subseteq \gamma(i)$, compute ind(i, S), the size of a largest independent set of $G_{\downarrow}(i)$ that contains all vertices of *S* and no vertex from $\gamma(i) \setminus S$ by dynamic programming.
- For a leaf node i with $\gamma(i) = \{v\}$:

$$ind(i, \emptyset) = 0$$
$$ind(i, \{v\}) = 1$$

• For a forget node *i* with child *i'* and $\gamma(i) = \gamma(i') \setminus \{v\}$:

$$ind(i, S) = \max(ind(i', S), ind(i', S \cup \{v\}))$$

• For an introduce node *i* with child *i'* and $\gamma(i) = \gamma(i') \cup \{v\}$:

$$ind(i,S) = \begin{cases} -\infty & \text{if } G[S] \text{ contains an edge} \\ ind(i',S \setminus \{v\}) + [1 \text{ if } v \in S] & \text{otherwise} \end{cases}$$

• For a join node i with children i' and i'':

$$ind(i, S) = ind(i', S) + ind(i'', S) - |S|$$

Exercise 5. Design an $O^*(9^t)$ time DP algorithm for tw-DOMINATING SET. Can you even achieve an $O^*(4^t)$ time DP algorithm?

tw-Dominating Set		
Input:	Graph G , integer k , and a tree decomposition of G of width at most t	
Parameter:	t	
Question:	Does G have a dominating set of size k ?	

Solution sketch.

- Obtain a nice tree decomposition (T, γ) of width t in polynomial time.
- Denote T_i the subtree of T rooted at node i
- Denote $\gamma_{\downarrow}(i) = \{v \in \gamma(j) : j \in V(T_i)\}$
- Denote $G_{\downarrow}(i) = G[\gamma_{\downarrow}(i)]$
- For each node *i* of *T*, and each labelling $\ell : \gamma(i) \to \{in, outDom, outNd\}$, compute the smallest size of a subset D of $\gamma_{\downarrow}(i)$ such that $D \cap \gamma(i)$ is the set of vertices labelled *in* by ℓ , and that dominates all vertices from $\gamma_{\downarrow}(i)$ except those that are labeled *outNd* by ℓ by dynamic programming.

The running time depends on how join nodes are handled. See Section 10.5 in the [Niedermeier, '06] textbook for details.