Computer Vision Week 4

COMP9517
Locality Sensitive Hashing

- Take random projections of data
- Quantize each projection with few bits
Finding a parametric transformation

- Similarity (translation, scale, rotation)
- Affine
- Projective (homography)

Slide: S. Lazebnik
Panograph using only rotation and translation
Fitting an affine transformation

• Assume we know the correspondences, how do we get the transformation?

\[
\begin{bmatrix}
 x' \\
 y'
\end{bmatrix} = \begin{bmatrix}
 m_1 & m_2 \\
 m_3 & m_4
\end{bmatrix} \begin{bmatrix}
 x_i \\
 y_i
\end{bmatrix} + \begin{bmatrix}
 t_1 \\
 t_2
\end{bmatrix}
\]

\[
\begin{bmatrix}
 x_i & y_i & 0 & 0 & 1 & 0 \\
 0 & 0 & x_i & y_i & 0 & 1 \\
 \vdots \\
 m_1 \\
 m_2 \\
 m_3 \\
 m_4 \\
 t_1 \\
 t_2
\end{bmatrix} \begin{bmatrix}
 m_1 \\
 m_2 \\
 m_3 \\
 m_4 \\
 t_1 \\
 t_2
\end{bmatrix} = \begin{bmatrix}
 x' \\
 y'
\end{bmatrix}
\]

Slide: S. Lazebnik
Fitting an affine transformation

\[
\begin{bmatrix}
\vdots \\
x_i & y_i & 0 & 0 & 1 & 0 \\
0 & 0 & x_i & y_i & 0 & 1 \\
\vdots \\
\end{bmatrix}
\begin{bmatrix}
m_1 \\
m_2 \\
m_3 \\
m_4 \\
t_1 \\
t_2 \\
\end{bmatrix}
= \begin{bmatrix}
\vdots \\
x'_i \\
y'_i \\
\vdots \\
\end{bmatrix}
\]

- Linear system with six unknowns
- Each match gives us two linearly independent equations: need at least three to solve for the transformation parameters
- Can solve \(Ax=b \) using least squares:
 \[x = (A^T A)^{-1} A^T b; \quad \text{or } x = A \backslash b; \text{ in Matlab} \]
Dealing with outliers

• The set of putative matches still contains a very high percentage of outliers

• How do we fit a geometric transformation to a small subset of all possible matches?

• Possible strategies:
 – RANSAC
 – Robust alternatives to least squares
Least squares: Robustness to noise

- Least squares fit to the red points:
Least squares: Robustness to noise

• Least squares fit with an outlier:

Problem: squared error heavily penalizes outliers
Robust estimators

- General approach: minimize \(\sum_i \rho(r_i(x_i, \theta); \sigma) \)

\(r_i(x_i, \theta) \) – residual of ith point w.r.t. model parameters \(\theta \)
\(\rho \) – robust function with scale parameter \(\sigma \)

The robust function \(\rho \) behaves like squared distance for small values of the residual \(u \) but saturates for larger values of \(u \)
Choosing the scale: Just right

The effect of the outlier is eliminated
Choosing the scale: Too small

The error value is almost the same for every point and the fit is very poor.
Choosing the scale: Too large

Behaves much the same as least squares
Robust estimation: Notes

- Robust fitting is a nonlinear optimization problem that must be solved iteratively
- Use IRLS algorithm
- Least squares solution can be used for initialization