7. Parameterized branching algorithms

COMP6741: Parameterized and Exact Computation

Serge Gaspers1,2

1School of Computer Science and Engineering, UNSW Australia
2Optimisation Research Group, NICTA

Semester 2, 2015
Outline

1. Running time analysis
2. Feedback Vertex Set
3. Maximum Leaf Spanning Tree
4. Further Reading
Outline

1. Running time analysis
2. Feedback Vertex Set
3. Maximum Leaf Spanning Tree
4. Further Reading
Recall: A search tree models the recursive calls of an algorithm. For a b-way branching where the parameter k decreases by a at each recursive call, the number of nodes is at most $b^{k/a} \cdot (k/a + 1)$.

If k/a and b are upper bounded by a function of k, and the time spent at each node is FPT (typically, polynomial), then we get an FPT running time.
Recall: Measure Based Analysis

For more precise running time upper bounds:

Lemma 1 (Measure Analysis Lemma)

Let

- A be a branching algorithm
- $c \geq 0$ be a constant, and
- $\mu(\cdot), \eta(\cdot)$ be two measures for the instances of A,

such that on input I, A calls itself recursively on instances I_1, \ldots, I_k, but, besides the recursive calls, uses time $O(|I|^c)$, such that

\[
(\forall i) \quad \eta(I_i) \leq \eta(I) - 1, \text{ and} \\
2^{\mu(I_1)} + \ldots + 2^{\mu(I_k)} \leq 2^{\mu(I)}. \tag{1}
\]

Then A solves any instance I in time $O(\eta(I)^{c+1}) \cdot 2^{\mu(I)}$.

Outline

1 Running time analysis

2 Feedback Vertex Set

3 Maximum Leaf Spanning Tree

4 Further Reading
A feedback vertex set of a multigraph $G = (V, E)$ is a set of vertices $S \subseteq V$ such that $G - S$ is acyclic.

Feedback Vertex Set

Input: Multigraph $G = (V, E)$, integer k

Parameter: k

Question: Does G have a feedback vertex set of size at most k?
Simplification Rules

We apply the first applicable1 simplification rule.

\textbf{(Loop)}

If G has a loop $vv \in E$, then set $G \leftarrow G - v$ and $k \leftarrow k - 1$.

1A simplification rule is \textit{applicable} if it modifies the instance.
We apply the first applicable\(^1\) simplification rule.

Loop

If \(G\) has a loop \(vv \in E\), then set \(G \leftarrow G - v\) and \(k \leftarrow k - 1\).

Multiedge

If \(E\) contains an edge \(uv\) more than twice, remove all but two copies of \(uv\).

\(^1\)A simplification rule is applicable if it modifies the instance.
Simplification Rules

We apply the first applicable\(^1\) simplification rule.

(Loop)
If \(G \) has a loop \(vv \in E \), then set \(G \leftarrow G - v \) and \(k \leftarrow k - 1 \).

(Multiedge)
If \(E \) contains an edge \(uv \) more than twice, remove all but two copies of \(uv \).

(Degree-1)
If \(\exists v \in V \) with \(d_G(v) \leq 1 \), then set \(G \leftarrow G - v \).

\(^1\)A simplification rule is applicable if it modifies the instance.
We apply the first applicable\(^1\) simplification rule.

(Loop)
If \(G\) has a loop \(vv \in E\), then set \(G \leftarrow G - v\) and \(k \leftarrow k - 1\).

(Multiedge)
If \(E\) contains an edge \(uv\) more than twice, remove all but two copies of \(uv\).

(Degree-1)
If \(\exists v \in V\) with \(d_G(v) \leq 1\), then set \(G \leftarrow G - v\).

(Budget-exceeded)
If \(k < 0\), then return No.

\(^1\)A simplification rule is applicable if it modifies the instance.
Simplification Rules II

(Degree-2)
If $\exists v \in V$ with $d_G(v) = 2$, then denote $N_G(v) = \{u, w\}$ and set
$G \leftarrow G' = (V \setminus \{v\}, (E \setminus \{vu, vw\}) \cup \{uw\})$.

Lemma 2 (Degree-2) is sound.
Proof.
Suppose S is a feedback vertex set of G of size at most k. Let $S' = \begin{cases} S & \text{if } v \not\in S \\ S \setminus \{v\} \cup \{u\} & \text{if } v \in S. \end{cases}$
Now, $|S'| \leq k$ and S' is a feedback vertex set of G' since every cycle in G' corresponds to a cycle in G, with, possibly, the edge uw replaced by the path (u, v, w).

Suppose S' is a feedback vertex set of G' of size at most k. Then, S' is also a feedback vertex set of G.

Simplification Rules II

(Degree-2)

If \(\exists v \in V \) with \(d_G(v) = 2 \), then denote \(N_G(v) = \{u, w\} \) and set \(G \leftarrow G' = (V \setminus \{v\}, (E \setminus \{vu, vw\}) \cup \{uw\}). \)

Lemma 2

(Degree-2) is sound.

Proof.

Suppose \(S \) is a feedback vertex set of \(G \) of size at most \(k \). Let

\[
S' = \begin{cases}
S & \text{if } v \notin S \\
(S \setminus \{v\}) \cup \{u\} & \text{if } v \in S.
\end{cases}
\]

Now, \(|S'| \leq k \) and \(S' \) is a feedback vertex set of \(G' \) since every cycle in \(G' \) corresponds to a cycle in \(G \), with, possibly, the edge \(uw \) replaced by the path \((u, v, w) \).

Suppose \(S' \) is a feedback vertex set of \(G' \) of size at most \(k \). Then, \(S' \) is also a feedback vertex set of \(G \).
A select–discard branching decreases k in only one branch.

One could branch on all the vertices of a cycle, but the length of a shortest cycle might not be bounded by any function of k.
Remaining issues

- A select–discard branching decreases k in only one branch
- One could branch on all the vertices of a cycle, but the length of a shortest cycle might not be bounded by any function of k

Idea:

- An acyclic graph has average degree < 2
- After applying simplification rules, G has average degree ≥ 3
- The selected feedback vertex set needs to be incident to many edges
- Does a feedback vertex set of size at most k contain at least one vertex among the $f(k)$ vertices of highest degree?
The fvs needs to be incident to many edges

Lemma 3

If S is a feedback vertex set of $G = (V, E)$, then

$$\sum_{v \in S} (d_G(v) - 1) \geq |E| - |V| + 1$$

Proof.

Since $F = G - S$ is acyclic, $|E(F)| \leq |V| - |S| - 1$. Since every edge in $E \setminus E(F)$ is incident with a vertex of S, we have

$$|E| = |E| - |E(F)| + |E(F)|$$

$$\leq \left(\sum_{v \in S} d_G(v) \right) + (|V| - |S| - 1)$$

$$= \left(\sum_{v \in S} (d_G(v) - 1) \right) + |V| - 1.$$
The fvs needs to contain a high-degree vertex

Lemma 4

Let G be a graph with minimum degree at least 3 and let H denote a set of $3k$ vertices of highest degree in G.

Every feedback vertex set of G of size at most k contains at least one vertex of H.

Proof. Suppose not. Let S be a feedback vertex set with $|S| \leq k$ and $S \cap H = \emptyset$. Then,

$$2 |E| - |V| = \sum_{v \in V} (d_G(v) - 1) \geq 3 \cdot (\sum_{v \in S} (d_G(v) - 1)) + \sum_{v \in S} (d_G(v) - 1) \geq 4 \cdot (|E| - |V| + 1) \iff 3 |V| \geq 2 |E| + 4.$$

But this contradicts the fact that every vertex of G has degree at least 3.
The fvs needs to contain a high-degree vertex

Lemma 4

Let G be a graph with minimum degree at least 3 and let H denote a set of $3k$ vertices of highest degree in G.

Every feedback vertex set of G of size at most k contains at least one vertex of H.

Proof.

Suppose not. Let S be a feedback vertex set with $|S| \leq k$ and $S \cap H = \emptyset$. Then,

\[
2|E| - |V| = \sum_{v \in V} (d_G(v) - 1)
= \sum_{v \in H} (d_G(v) - 1) + \sum_{v \in V \setminus H} (d_G(v) - 1)
\geq 3 \cdot (\sum_{v \in S} (d_G(v) - 1)) + \sum_{v \in S} (d_G(v) - 1)
\geq 4 \cdot (|E| - |V| + 1)
\]

\[\Leftrightarrow 3|V| \geq 2|E| + 4.\]

But this contradicts the fact that every vertex of G has degree at least 3.
Algorithm for Feedback Vertex Set

Theorem 5

Feedback Vertex Set can be solved in $O^*((3k)^k)$ time.

Proof (sketch).

- Exhaustively apply the simplification rules.
- The branching rule computes H of size $3k$, and branches into subproblems $(G - v, k - 1)$ for each $v \in H$.
Outline

1. Running time analysis

2. Feedback Vertex Set

3. Maximum Leaf Spanning Tree

4. Further Reading
Maximum Leaf Spanning Tree

A leaf of a tree is a vertex with degree 1. A spanning tree in a graph $G = (V, E)$ is a subgraph of G that is a tree and has $|V|$ vertices.

Maximum Leaf Spanning Tree

Input: connected graph G, integer k

Parameter: k

Question: Does G have a spanning tree with at least k leaves?
A k-leaf tree in G is a subgraph of G that is a tree with at least k leaves. A k-leaf spanning tree in G is a spanning tree in G with at least k leaves.

Lemma 6

Let $G = (V, E)$ be a connected graph. G has a k-leaf tree \iff G has a k-leaf spanning tree.

Proof.

(\Leftarrow): trivial

(\Rightarrow): Let T be a k-leaf tree in G. By induction on $x := |V| - |V(T)|$, we will show that T can be extended to a k-leaf spanning tree in G.

Base case: $x = 0 \checkmark$.

Induction: $x > 0$, and assume the claim is true for all $x' < x$. Choose $uv \in E$ such that $u \in V(T)$ and $v \notin V(T)$. Since $T' := (V(T) \cup \{v\}, E(T) \cup \{uv\})$ has $\geq k$ leaves and $< x$ external vertices, it can be extended to a k-leaf spanning tree in G by the induction hypothesis. \square
The branching algorithm will check whether G has a k-leaf tree.

A tree with ≥ 3 vertices has at least one internal (= non-leaf) vertex.

“Guess” an internal vertex r, i.e., do a $|V|$-way branching fixing an initial internal vertex r.
The branching algorithm will check whether G has a k-leaf tree.

A tree with ≥ 3 vertices has at least one internal (= non-leaf) vertex.

“Guess” an internal vertex r, i.e., do a $|V|$-way branching fixing an initial internal vertex r.

In any branch, the algorithm has computed

- T – a tree in G
- I – the internal vertices of T, with $r \in I$
- B – a subset of the leaves of T where T may be extended: the boundary set
- L – the remaining leaves of T
- X – the external vertices $V \setminus V(T)$
The branching algorithm will check whether G has a k-leaf tree.

A tree with ≥ 3 vertices has at least one internal (= non-leaf) vertex.

“Guess” an internal vertex r, i.e., do a $|V|$-way branching fixing an initial internal vertex r.

In any branch, the algorithm has computed
- T – a tree in G
- I – the internal vertices of T, with $r \in I$
- B – a subset of the leaves of T where T may be extended: the boundary set
- L – the remaining leaves of T
- X – the external vertices $V \setminus V(T)$

The question is whether T can be extended to a k-leaf tree where all the vertices in L are leaves.
Simplification Rules

Apply the first applicable simplification rule:

(Halt-Yes)
If $|L| + |B| \geq k$, then return \textbf{Yes}.

(Halt-No)
If $|B| = 0$, then return \textbf{No}.

(Non-extendable)
If $\exists v \in B$ with $N_G(v) \cap X = \emptyset$, then move v to L.
Lemma 7 (Branching Lemma)

Suppose $u \in B$ and there exists a k-leaf tree T' extending T where u is an internal vertex. Then, there exists a k-leaf tree T'' extending $(V(T) \cup N_G(u), E(T) \cup \{uv : v \in N_G(u) \cap X\})$.

Proof. Start from $T'' \leftarrow T'$ and perform the following operation for each $v \in N_G(u) \cap X$.

If $v \notin V(T')$, then add the vertex v and the edge uv.

Otherwise, add the edge uv, creating a cycle C in T and remove the other edge of C incident to v. This does not decrease the number of leaves, since it only increases the number of edges incident to u, and u was already internal.
Lemma 7 (Branching Lemma)

Suppose \(u \in B \) and there exists a \(k \)-leaf tree \(T' \) extending \(T \) where \(u \) is an internal vertex.

Then, there exists a \(k \)-leaf tree \(T'' \) extending
\[
(V(T) \cup N_G(u), E(T) \cup \{uv : v \in N_G(u) \cap X\}).
\]

Proof.

Start from \(T'' \leftarrow T' \) and perform the following operation for each \(v \in N_G(u) \cap X \).
If \(v \notin V(T') \), then add the vertex \(v \) and the edge \(uv \).
Otherwise, add the edge \(uv \), creating a cycle \(C \) in \(T \) and remove the other edge of \(C \) incident to \(v \). This does not decrease the number of leaves, since it only increases the number of edges incident to \(u \), and \(u \) was already internal.
Lemma 8 (Follow Path Lemma)

Suppose $u \in B$ and $|N_G(u) \cap X| = 1$. Let $N_G(u) \cap X = \{v\}$.
If there exists a k-leaf tree extending T where u is internal, but no k-leaf tree extending T where u is a leaf, then there exists a k-leaf tree extending T where both u and v are internal.
Lemma 8 (Follow Path Lemma)

Suppose \(u \in B \) and \(|N_G(u) \cap X| = 1 \). Let \(N_G(u) \cap X = \{v\} \).

If there exists a \(k \)-leaf tree extending \(T \) where \(u \) is internal, but no \(k \)-leaf tree extending \(T \) where \(u \) is a leaf, then there exists a \(k \)-leaf tree extending \(T \) where both \(u \) and \(v \) are internal.

Proof.

Suppose not, and let \(T' \) be a \(k \)-leaf tree extending \(T \) where \(u \) is internal and \(v \) is a leaf. But then, \(T - v \) is a \(k \)-leaf tree as well.
Apply simplification rules
Select $u \in B$. Branch into
- $u \in L$
- $u \in I$. In this case, add $X \cap N_G(u)$ to B (Branching Lemma). In the special case where $|X \cap N_G(u)| = 1$, denote $\{v\} = X \cap N_G(u)$, make v internal, and add $N_G(v) \cap X$ to B, continuing the same way until reaching a vertex with at least 2 neighbors in X (Follow Path Lemma).
Algorithm

- Apply simplification rules
- Select $u \in B$. Branch into
 - $u \in L$
 - $u \in I$. In this case, add $X \cap N_G(u)$ to B (Branching Lemma). In the special case where $|X \cap N_G(u)| = 1$, denote $\{v\} = X \cap N_G(u)$, make v internal, and add $N_G(v) \cap X$ to B, continuing the same way until reaching a vertex with at least 2 neighbors in X (Follow Path Lemma).

- In one branch, a vertex moves from B to L; in the other branch, $|B|$ increases by at least 1.
Running time analysis

- Measure $\mu := 2k - 2|L| - |B| \geq 0$.
- Branch where $u \in L$:
 - $|B|$ decreases by 1, $|L|$ increases by 1
 - μ decreases by 1
- Branch where $u \in I$.
 - u moves from B to I
 - ≥ 2 vertices move from X to B
 - μ decreases by at least 1

- Binary search tree
- Height $\leq \mu \leq 2k$
Theorem 9 ([Kneis, Langer, Rossmanith, 2011])

Maximum Leaf Spanning Tree can be solved in $O^*(4^k)$ time.

Current best: $O^*(3.72^k)$ [Daligault, Gutin, Kim, Yeo, 2010]
Recall:
An independent set in a graph $G = (V, E)$ is a set of vertices $S \subseteq V$ such that $G[S]$ has no edge.
$\Delta(G)$ denotes the maximum degree of G.

Sol+Δ-Independent Set

Input: graph G, integer k
Parameter: $k + \Delta(G)$
Question: Does G have an independent set of size at least k?

- Show that **Sol+Δ-Independent Set** is FPT.
Exercise 1

Recall:
An independent set in a graph $G = (V, E)$ is a set of vertices $S \subseteq V$ such that $G[S]$ has no edge.
$\Delta(G)$ denotes the maximum degree of G.

SOL+Δ-INDEPENDENT SET

<table>
<thead>
<tr>
<th>Input:</th>
<th>graph G, integer k</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter:</td>
<td>$k + \Delta(G)$</td>
</tr>
<tr>
<td>Question:</td>
<td>Does G have an independent set of size at least k?</td>
</tr>
</tbody>
</table>

- Show that SOL+Δ-INDEPENDENT SET is FPT.

Hint: We may restrict our attention to maximal independent sets, where we know: every maximal independent set contains at least one vertex from $N_G[v]$, where v is any vertex of G.
Solution sketch

- Select a vertex \(v \in V \)
- Do a \((d_G(v) + 1)\)-way branching, recursively checking for each \(u \in N_G[v] \), whether \(G - N_G[u] \) has an independent set of size at least \(k - 1 \)
- Since \(k \) decreases by at least 1 in each branch, and the number of branches is at most \(\Delta(G) + 1 \), we obtain a running time of \(O^*((\Delta(G) + 1)^k) \)
- This is an FPT algorithm
Exercise 2

A cluster graph is a graph where every connected component is a complete graph.

Cluster Editing

Input: Graph $G = (V, E)$, integer k

Parameter: k

Question: Is it possible to edit (add or delete) at most k edges of G so that it becomes a cluster graph?

Recall that G is a cluster graph iff G contains no induced P_3 (path with 3 vertices) and has a kernel with $O(k^2)$ vertices.

Design an algorithm for Cluster Editing with running time $3^k \cdot k^{O(1)} + n^{O(1)}$.
Solution sketch

- Kernelize to obtain an equivalent instance \((G', k')\) on \(O(k^2)\) vertices in \(n^{O(1)}\) time.
- As a branching strategy, select an induced \(P_3\) \((u, v, w)\) and recursively check whether any of the following graphs can be edited into a cluster graph with at most \(k - 1\) edge edits: the graph where we remove the edge \(uv\), the graph where we remove the edge \(vw\), and the graph where we add the edge \(uw\) to \(G'\).
Outline

1. Running time analysis
2. Feedback Vertex Set
3. Maximum Leaf Spanning Tree
4. Further Reading
Further Reading

