
NOTES ON BATCHER SORT

ERIC MARTIN

Given a natural number N , an algorithm meant to sort a list L of N integers is nonadaptive if it is equivalent to a sequence
of instructions of the form:

order (L , i 0 , j 0)

order (L , i 1 , j 1)

. . .

o rder (L , i k , j k)

for some natural number k and some natural numbers i 0 , j 0, i 1 , j 1, . . . , i k, j k smaller than N , where order() is
defined as:

de f order (L , i , j) :

i f L [i] > L [j] :

L [i] , L [j] = L [j] , L [i]

In other words, the same sequence of comparisons is performed to sort any list of length N , each comparison of two values
resulting or not in a swap of those values.

For instance, if N is equal to 4, then such a sequence of instructions could be:

order (L [0] , L [1])

order (L [2] , L [3])

order (L [0] , L [2])

order (L [1] , L [3])

order (L [1] , L [2])

(The smallest element is the least of the smallest of the first two and the smallest of the last two. The largest element is
the greatest of the largest of the first two and the largest of the last two. The middle elements might have to be swapped.)
It can be represented by the following sorting network :

0

1

2

3

The first two comparisons could be performed in parallel, and then the next two comparisons could also be performed in
parallel.

Assume that the number N of data to be sorted is even. Recall that Merge sort splits an array in two halves, sorts both
halves recursively, yielding two sorted halves H1 and H2, and then merges H1 and H2. When N > 2, merging can be
done by first unshuffling the data, transforming (for N = 8)

into

then ordering both new halves C1 and C2 separately

Date: Session 2, 2015.

2 ERIC MARTIN

then shuffling the resulting halves D1 and D2

and finally ordering the second and third elements, the fourth and fifth elements...

Indeed:

• After unshuffling, C1 contains the smallest element from H1, , and the smallest element from H2, , with the

smallest of the two, , being put into first position after shuffling.

• After unshuffling, C2 contains the largest element from H1, , and the largest element from H2, , with the

largest of the two, , being put into last position after shuffling.
• Assume that N > 2, and suppose that the first 2p + 1 data, 0 ≤ p < N

2 − 1, have been correctly put into place.
What remains to put into place is in the sorted sequence x1, . . . , xi from D1 and in the sorted sequence y1, . . . ,
yj from D2, i, j ≥ 1. Then x1 and y1 are ordered, clearly putting the smallest of the remaining data into place.
Without loss of generality, assume it is x1 and assume for a contradiction that y1 is not the next smallest datum,
so i > 1 and x2 is the next smallest datum. If x1 and x2 both come from H1 or both come from H2, then there is
some element in-between which belongs to C2, hence has to be one of y1, . . . , yj , which is impossible. Hence x1

has to be the penultimate element from H1, , and x2 has to be the first element from H2, , or the other way

around, with the last element of H1, , being one of y1, . . . , yj . But then an even number of elements, namely,
all elements of H1 except for the last two and no others, have been put into place, which again is impossible.
Hence the first 2p + 3 data are correctly put into place.

Assume now that N is a power of 2. Note that if N > 2 then C1 and C2 themselves consist of two sorted halves–

and for C1, and for C2–, hence the technique just described can be applied to the halves of C1 and
the halves of C2 if N > 2, and to the halves of those halves if N > 4. . . , until we reach a problem of size two which is
solved simply by executing a call to order():

1

0

When using the network model, every recursive step after the base case amounts to “copying the pattern of the previous
step” to both the network of even lines and to the network of odd lines, and then ordering the elements on lines 1 and 2,
and if N > 4 the elements on lines 3 and 4 and the elements on lines 5 and 6, and if N > 8 the elements on lines 7 and
8. . .

For N = 4:

3

2

1

0

For N = 8:

0

1

2

3

4

5

6

7

NOTES ON BATCHER SORT 3

We see a pattern which emerges from merging two sorted arrays of size 2, two sorted arrays of size 4, two sorted arrays of
size 8. . . Merge sort where merging is done as described can therefore be captured by this pattern for sorting two arrays
of size N

2 if N > 2, following this pattern for sorting two arrays of size N
4 for both the first and second halves of the data

if N > 4, following this pattern for sorting two arrays of size N
8 for the first, second, third and fourth quarters of the data

if N > 8. . .

0

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

h 1 2 4 8 16

s 1
0
2
4
6
8
10
12
14
16
18
20
22
24
26
28
30

2
0
4
8
12
16
20
24
28

t
1
1
�3
5
�7
9
��11
13
��15
17
��19
21
��23
25
��27
29
��31

4
0
8
16
24

2
2
�6
10
��14
18
��22
26
��30

1
1
3
5
�7
9
11
13
��15
17
19
21
��23
25
27
29
��31

8
0
16

4
4
��12
20
��28

2
2
6
10
��14
18
22
26
��30

1
1
3
5
7
9
11
13
��15
17
19
21
23
25
27
29
��31

16
0

8
8
��24

4
4
12
20
��28

2
2
6
10
14
18
22
26
��30

1
1
3
5
7
9
11
13
15
17
19
21
23
25
27
29
��31

h is for half_size, s for span and t for top.

group is the index of a “group of lines” some of which will be skipped: we skip every skipth group.

There are log2(N) possible values for h. For each possible value of h, there are at most log2(N) possible values for s.
For each possible value h and each possible value of s, there are fewer than N calls to order(), so the algorithm is in
O(N(log2(N))2).

COMP9021 Principles of Programming

