
1

Assembly

Programming (II)

Lecturer: Sri Parameswaran

Notes by: Annie Guo

2

Lecture overview

 Assembly program structure

 Assembler directives

 Assembler expressions

 Macro

 Memory access

 Assembly process

 First pass

 Second pass

3

Assembly program structure

 An assembly program basically consists of

 Assembler directives
 E.g. .equ constant = 19

 Executable instructions
 E.g. add r1, r2

 An input line in an assembly program takes
one of the following forms :

 [label:] directive [operands] [Comment]

 [label:] instruction [operands] [Comment]

 Comment

 Empty line

4

Assembly program structure

(cont.)

 The label for an instruction is associated with

the memory location address of that

instruction.

 All instructions are not case sensitive

 “add” is same as “ADD”

 “.equ” is same as “.EQU”

5

Example

; The program performs
; 3-way addition: a+b+c;

.equ A = 4
.equ B = 8
.equ C = 9

ldi r16, A
ldi r17, B
ldi r18, C
add r16, r17
add r16, r18

Two comment lines

Empty line

Three assembler directives

Five executable instructions

6

Comments

 A comment has the following form:

 ;[Text]

 Items within the brackets are optional

 The text between the comment-delimiter(;)

and the end of line (EOL) is ignored by the

assembler.

7

Assembly directives

 Instructions to the assembler are created for
a number of purposes:

 For symbol definitions

 For readability and maintainability

 All symbols used in a program will be replaced by the
real values when assembling

 E.g. .equ, .set

 For program and data organization
 E.g. .org, .cseg, .dseg

 For data/variable memory allocation
 E.g. .db, .dw

 For others

8

NOTE: All directives must be preceded by a period

Summary of

AVR Assembler

directives

9

Directives for symbol

definitions (cont.)

 .equ

 Define symbols for values

 Non-redefinable. Once set, the symbol cannot be

redefined to other value later in the program

 E.g.

 .equ length = 2

 Symbol length with value 2 can be used anywhere in

the program after the definition

.equ symbol = expression

10

Directives for symbol

definitions (cont.)

 .set

 Define symbols for values

 Re-definable. The symbol can be changed to

represent other values later in the program.

 E.g.

 .set input = 5

 Symbol input with value 5 can be used anywhere in

the program after this definition and before its

redefinition.

.set symbol = expression

11

Directives for symbol

definitions

 .def

 Define an alias for a register

 E.g.

 .def ZL = r30

 Symbol temp can be used instead of r30 anywhere in

the program after the definition

.def symbol = register

12

Program/data memory

organization

 AVR has three different memories

 Data memory

 Program memory

 EEPROM memory

 The three memories correspond to three

memory segments to the assembler:

 Data segment (or RAM)

 Program segment (or Code segment, Flash)

 EEPROM segment

13

Program/data memory

organization directives

 Memory segment directives specify which

memory segment to use

 .dseg

 Data segment

 .cseg

 Code segment

 .eseg

 EEPROM segment

 The .org directive specifies the start address

to store the related program/data.

14

Example
 .dseg ; Start data segment

vartab: .byte 4 ; Reserve 4 bytes in SRAM
 ; (Will be at 0x200 on the atmega2560)

 .cseg ; Start code segment
 ; default start location is 0x0000

const: .dw 10, 0x10, 0b10, -1
 ; Write 10, 16, 2, -1 in program
 ; memory, each value takes
 ; 2 bytes.

 mov r1,r0 ; Do something

15

Data/variable memory

allocation directives

 Specify the memory locations/sizes for

 Constants

 In program/EEPROM memory

 Variables

 In data memory

 All directives must start with a label so that
the related data/variable can be accessed
later.

16

Directives for Constants

 Store data in program/EEPROM memory

 .db

 Store byte constants in program/EEPROM memory

 expr* is a byte constant value or string literal

 .dw

 Store word (16-bit) constants in program/EEPROM

memory

 Little endian rule is used

 expr* is a word constant value

Label: .db expr1, expr2, …

Label: .dw expr1, expr2, …

17

Directives for Variables

 Reserve bytes in data memory

 .byte

 Reserve a number of bytes for a variable

 expr is the number of bytes to be reserved.

Label: .byte expr

18

Other Directives

 Include a file

 .include “m2560def.inc”

 Stop processing the assembly file

 .exit

 Begin and end macro definition

 .macro

 .endmacro

 Will be discussed in detail later

19

Implement data/variables

 With those directives, you can

implement/translate data/variables into

machine level descriptions

 An example of translation by WINAVR is

given in the next slide.

20

Sample C program
// global variables:
const char g_course[] = "COMP";
char* g_inputCourse = "COMP";
char g_a;
static char g_b;

int main(void) {
 // local variables:
 const char course[] = "COMP9032";
 char* inputCourse = "COMP9032";
 char a;
 static char b;
 char i;
 char isCOMP9032 = 1;

 for(i=0; i<9; i++){
 if (inputCourse[i] != course[i]) {
 isCOMP9032 = 0;
 i = 9;
 }
 }
 return 0;
}

21

Memory mapping after build

and run

22

Memory mapping after

execution

23

Memory mapping diagram

0x0100

0x0104

0x0105

0x0109

0x010A

g_course

Constants

g_inputCourse

pointer (g_inputCourse)
0x010B

0x0115

0x011D

 inputCourse

0x011E

0x011F

0x0120

 b

 g_b

 g_a
 i

 a

pointer (inputCourse)

 course

constants

0x10FE

0x10FD

0x10FA

0x10FAB

RAMEND

0x10F2

0x10FAC

Static data

Dynamic data

 isCOMP9032

24

Remarks

 Data has scope and duration in the program

 Data has types and structure

 Those features determine where and how to
store data in memory.

 Constants are usually stored in the non-
volatile memory and variables are allocated
in SRAM memory.

 In this lecture, we will only take a look at how
to implement basic data types.
 Implementation of advanced data structures/variables will

be covered later.

25

Example 1

 Translate the following C variables. Assume

each integer takes four bytes.

int a;
unsigned int b;
char c;
char* d;

26

Example 1: solution

 Translate the following variables. Assume
each integer takes four bytes.

 All variables are allocated in SRAM

 Labels are given the same name as the variable
for convenience.

.dseg ; in data memory

a: .byte 4 ; 4 byte integer
b: .byte 4 ; 4 byte unsigned integer
c: .byte 1 ; 1 character
d: .byte 2 ; address pointing to the string

27

Example 2
 Translate the following C constants and

variables.

 All variables are in SRAM and constants are in FLASH

int a;
const char b[] = ‚COMP2121‛;
const int c = 2121;

.dseg
a: .byte 4

.cseg
b: .db ‚COMP2121‛, ‘\0’
C: .dw 2121

C code:

Assembly

code:

28

Example 2 (cont.)

 An insight of the memory mapping

 In program memory, data is packed into words. If

only a single byte is left, that byte is stored in the

high byte and the low byte is filled with 0.

0x0000

0x0001

0x0002

0x0003

0x0004

0x0005

‘C’ ‘O’

‘M’ ‘P’

‘2’ ‘1’

‘2’ ‘1’

 0 0

 2121

43 4F

4D 50

32 31

32 31

00 00

49 08

Hex values

29

Example 3

 Translate data structures
struct STUDENT_RECORD
{
 int student_ID;
 char name[20];
 char WAM;
};

typedef struct STUDENT_RECORD *student;

student s1;
student s2;

30

Example 3 : solution

 Translate data structures

.equ student_ID = 0

.equ name = student_ID + 4

.equ WAM = name + 20

.equ STUDENT_RECORD_SIZE = WAM + 1

.dseg
s1: .byte STUDENT_RECORD_SIZE
s2: .byte STUDENT_RECORD_SIZE

31

Example 4

 Translate data structures

 with initialization

struct STUDENT_RECORD
{
 int student_ID;
 char name[20];
 char WAM;
};

typedef struct STUDENT_RECORD *student;

student s1 = {123456, ‚John Smith‛, 75};
student s2;

32

Example 4: solution

 Translate data structures
.equ student_ID = 0
.equ name = student_ID + 4
.equ WAM = name + 20
.equ STUDENT_RECORD_SIZE = WAM + 1

.cseg
s1_value: .dw HWRD(123456)
 .dw LWRD(123456)
 .db ‚John Smith‛,0,0,0,0,0,0,0,0,0,0
 .db 75
.dseg
s1: .byte STUDENT_RECORD_SIZE
s2: .byte STUDENT_RECORD_SIZE

33

Remarks

 The constant values for initialization are

stored in the program memory in order to

keep the values when power is off.

 The variable will be populated with the initial

values when the program is started.

34

Assembler expressions

 In the assembly program, you can use

expressions for values.

 When assembling, the assembler evaluates

each expression and replaces the expression

with the calculated value.

35

Assembler expressions (cont.)

 The expressions are in a form similar to

normal math expressions

 Consisting of operands, operators and functions.

All expressions are internally 32 bits.

 Example

 ldi r26, low(label + 0xff0)

 Function Operands Operator

36

Operands

 Operands can be

 User defined labels

 associated with memory addresses

 User defined variables

 defined by the „set‟ directive

 User defined constants

 defined by the „equ‟ directive

 Integer constants

 can be in several formats, including
 Decimal (default): 10, 255

 Hexadecimal (two notations): 0x0a, $0a, 0xff, $ff

 Binary: 0b00001010, 0b11111111

 Octal (leading zero): 010, 077

 PC

 Program counter value.

37

Operators Symbol Description
! Logical Not
~ Bitwise Not
- Unary Minus
* Multiplication
/ Division
+ Addition
- Subtraction
<< Shift left
>> Shift right
< Less than
<= Less than or equal
> Greater than
>= Greater than or equal
== Equal
!= Not equal
& Bitwise And
^ Bitwise Xor
| Bitwise Or
&& Logical And
|| Logical Or

Same

meanings

as in C

38

Functions
 LOW(expression)

 Returns the low byte of an expression

 HIGH(expression)
 Returns the second byte of an expression

 BYTE2(expression)
 The same function as HIGH

 BYTE3(expression)
 Returns the third byte of an expression

 BYTE4(expression)
 Returns the fourth byte of an expression

 LWRD(expression)
 Returns bits 0-15 of an expression

 HWRD(expression):
 Returns bits 16-31 of an expression

 PAGE(expression):
 Returns bits 16-21 of an expression

 EXP2(expression):
 Returns 2 to the power of expression

 LOG2(expression):
 Returns the integer part of log2(expression)

39

Example 1

; Example1:

 ldi r17, 1<<5 ; load r17 with 1

 ; shifted left 5 times

40

Example 2

;Example 2: compare r17:r16 with
3167
 cpi r16, low(3167)
 ldi r18, high(3167)
 cpc r17, r18
 brlt case1
…
case1: inc r10

41

Macros

 A sequence of instructions in an assembly

program often needs to be repeated several

times

 Macros help programmers to write code

efficiently and nicely

 Type/define a section code once and reuse it

 Neat representation

 Like an inline function in C

 When assembled, the macro definition is expanded at

the place it was used.

42

Detectives for Macros

 .macro

 Tells the assembler that this is the start of a

macro

 Takes the macro name and other parameters

 Up to 10 parameters

 Which are referenced by @0, …@9 in the macro definition

body

 .endmacro

 Defines the end of a macro definition.

43

Macros (cont.)

 Macro definition structure:

 Use of Macro

.macro name
 ; macro body
.endmacro

macro_name [param0, param1, …,param9]

44

Example 1

 Swapping memory data p, q twice

 With macro

.macro swap1

 lds r2, p ; load data

 lds r3, q ; from p, q

 sts q, r2 ; store data

 sts p, r3 ; to q, p

.endmacro

swap1

swap1

Without macro

lds r2, p

lds r3, q

sts q, r2

sts p, r3

lds r2, p

lds r3, q

sts q, r2

sts p, r3

45

Example 2

 Swapping any two memory data

 .macro swap2

 lds r2, @0 ; load data from provided

 lds r3, @1 ; two locations

 sts @1, r2 ; interchange the data and

 sts @0, r3 ; store data back

.endmacro

swap2 a, b ; a is @0, b is @1

swap2 c, d ; c is @0, d is @1

46

Example 3

 Register bit copy
 copy a bit from one register to a bit of another

register

.macro bitcopy
 bst @0, @1
 bld @2, @3
.endmacro

bitcopy r4, 2, r5, 3
bitcopy r5, 4, r7, 6

end: rjmp end

47

Memory access operations

 Access to data memory

 Using instructions

 ld, lds, st, sts

 Access to program memory

 Using instructions

 lpm

 spm

 Not covered in this course

 Most of time, we access program memory to load

data

48

Load Program Memory

 Syntax: lpm Rd, Z+

 Operands: Rd{r0, r1, …, r31}

 Operation: Rd  (Z)

 Z  Z +1 (optional)

 Words: 1

 Cycles: 3

49

Load from program memory

 The address label in the memory program is

word address

 Used by the PC register

 To access data, the byte address is used.

 Address register, Z, is used to point bytes in

the program memory

50

Example

.include ‚m2560def.inc‛ ; include definition for Z

ldi ZH, high(Table_1<<1) ; Initialize Z-pointer
ldi ZL, low(Table_1<<1)

lpm r16, Z ; Load constant from Program
 ; memory pointed to by Z (r31:r30)

Table_1:
 .dw 0x5876 ; 0x76 is the value when ZLSB = 0
 ; 0x58 is the value when ZLSB = 1

51

Complete example 1

 Copy data from Program memory to Data

memory

52

Complete example 1 (cont.)

 C description

 struct STUDENT_RECORD
{
 int student_ID;
 char name[20];
 char WAM;
};

typedef struct STUDENT_RECORD *student;

student s1 = {123456, "John Smith", 75};

53

Complete example 1 (cont.)
 Assembly translation

.set student_ID = 0

.set name = student_ID + 4

.set WAM = name + 20

.set STUDENT_RECORD_SIZE = WAM + 1

.cseg rjmp start ; jump over data definitions

s1_value: .dw HWRD(123456)
 .dw LWRD(123456)
 .db "John Smith‚,0,0,0,0,0,0,0,0,0,0
 .db 75

start: ldi ZH, high(s1_value<<1) ;pointer to student record
 ldi ZL, low(s1_value<<1) ;value in the program memory

 ldi YH, high(s1) ;pointer to student record holder
 ldi YL, low(s1) ;in the data memory
 clr r16

54

Complete example 1 (cont.)

 Assembly translation (cont.)

load:
 cpi r16, STUDENT_RECORD_SIZE
 brge end
 lpm r10, z+
 st y+, r10
 inc r16
 rjmp load
end:
 rjmp end

.dseg
s1: .byte STUDENT_RECORD_SIZE

55

Complete example 2

 Convert lower-case to upper-case for a string

 The string is stored in the program memory

 The resulting string after conversion is stored in

data memory.

 In ASCII, upper case letter + 32 = low case letter

56

Complete example 2 (cont.)

 Assembly program

.include "m2560def.inc"

.equ size = 5

.dseg ; Set the starting address

Cap_string: .byte 5

.cseg

 rjmp start ; Skip over data

Low_string: .db "hello‚,0

start: ldi ZL, low(Low_string<<1) ; Get the low byte of

 ; the address of "h"

 ldi ZH, high(Low_string<<1) ; Get the high byte of

 ; the address of "h"

 ldi YH, high(Cap_string)

 ldi YL, low(Cap_string)

 clr r17 ; counter=0

57

Complete example 2 (cont.)

 Assembly program (cont.)

main:

 lpm r20, Z+ ; Load a letter from flash memory

 subi r20, 32 ; Convert it to the capital letter

 st Y+,r20 ; Store the capital letter in SRAM

 inc r17 ; counter++

 cpi r17, size ; counter < size

 brlt main

loop:

 rjmp loop

58

Assembly

 Assembly programs need to be converted to

machine code before execution

 This translation/conversion from assembly

program to machine code is called assembly and

is done by the assembler

 There are two steps in the assembly

processes:

 Pass one

 Pass two

59

Two Passes in Assembly

 Pass one

 Lexical and syntax analysis: checking for syntax

errors

 Record all the symbols (labels etc) in a symbol

table

 Expand macro calls

 Pass Two

 Use the symbol table to substitute the values for

the symbols and evaluate functions.

 Assemble each instruction

 i.e. generate machine code

60

Example

.equ bound = 5

 clr r16
loop:
 cpi r16, bound
 brlo end
 inc r16
 rjmp loop
end:

 rjmp end

Symbol table Assembly program

Symbol Value

bound 5

loop 1

end 5

61

Example (cont.)

Address Code Assembly statement

00000000: 2700 clr r16
00000001: 3005 cpi r16,0x05
00000002: F010 brlo PC+0x02
00000003: 9503 inc r16
00000004: CFFC rjmp PC-0x0004
00000005: CFFF rjmp PC-0x0001

Code generation

62

Absolute Assembly

 A type of assembly process.

 Can only be used for the source file that contains

all the source code of the program

 Programmers use .org to tell the assembler

the starting address of a segment (data

segment or code segment)

 Whenever any change is made in the source

program, all code must be assembled.

 A loader transfers an executable file

(machine code) to the target system.

63

Absolute Assembly

-- workflow
Source file with location

information (NAME.ASM)

Absolute

assembler

Executable file

(NAME.EXE)

Loader Program

Computer

memory

64

Relocatable Assembly

 Another type of assembly process.

 Each source file can be assembled

separately

 Each file is assembled into an object file

where some addresses may not be resolved

 A linker program is needed to resolve all

unresolved addresses and make all object

files into a single executable file

65

Source file 1

(MODULE1.ASM

Source file 2

(MODULE1.ASM

Relocatable

assembler

Relocatable

assembler

Object file1

(MODULE1.OBJ
Object file2

(MODULE2.OBJ

Linker

program

Library of object

files (FILE.LIB)

Executable file

(NAME.EXE)

Code and data

location

information

Relocatable Assembly

-- workflow

66

Homework

1. Refer to the AVR Instruction Set manual, study the
following instructions:

• Arithmetic and logic instructions

 clr

 inc, dec

• Data transfer instructions

 movw

 sts, lds

 lpm

 bst, bld

 Program control

 jmp

 sbrs, sbrc

67

Homework

2. Design a checking strategy that can find the

endianness of AVR machine.

3. Discuss the advantages of using Macros. Do

macros help programmer write an efficient

code? Why?

68

Homework

4. Write an assembly program to find the length

of a string. The string is stored in the program

memory and the length will be stored in the

data memory.

69

Homework

5. Write an assembly program to find the student

average WAM in a class. The record for each

student is defined as

 Assume there are 5 students and all records are

stored in the program memory. The average WAM

will be stored in the data memory.

struct STUDENT_RECORD
{
 int student_ID;
 char name[20];
 char WAM;
};
typedef struct STUDENT_RECORD *student;

70

Reading Material

 Chap. 5. Microcontrollers and

Microcomputers

 User‟s guide to AVR assembler

 This guide is a part of the on-line documentations

accompanied with AVR Studio. Click help in AVR

Studio.

