School of Computer Science and Engineering

COMP9021

PRINCIPLES OF PROGRAMMING

Session 2, 2017

Contents

1 Course staff

2 Course details

3 Course aims

4 Student learning outcomes

5 Overall approach to learning and teaching
6 Teaching strategies

7 Assessment

8 Academic honesty and plagiarism

9 Course schedule

10 Resources for students

11 Course evaluation and development

12 Other matters

10

11

1 Course staff

Lecturer in charge: Eric Martin

Office: building K17, room 409
Email: emartin@cse.unsw.edu.au

Phone: 9385 6936

Tutor for consultation: Matthew Perry (z5075269Qunsw.edu.au)

The lecturer in charge will be answering e-mails for personal matters that are not of relevance to
other students, and provided that they do not require extensive or substantive answers. Questions
that cannot be answered shortly should be raised in consultation. All questions that are of interest to
the class should be asked using the utility of the platform used to manage the course (MessageBoard
or Discussion). Students are encouraged to also answer any question and more generally, actively
participate in any discussion which they can usefully contribute to.

Starting from week 2, the tutor will be available twice a week for 2 hours:

e on Tuesday from 6:30 to 8:30 in the Clavier lab (K14 LG20);
e on Friday from 1:00 to 3:00 in the Clavier lab (K14 LG20).

Being held in a practical environment, these consultations are meant to provide personal support
and resolve issues that cannot be addressed, or not easily so, through online discussion. Other slots
will be made available if necessary.

2 Course details

Units of credit: 6

No parallel teaching: only COMP9021 students attend the classes.
3 Course aims

This is a Level 0 course. It has no prerequisite. Like most Level 0 courses, it consists of bridging
material in computing taught at an accelerated pace. It is a prerequisite to a number of courses

https://www.engineering.unsw.edu.au/computer-science-engineering/courses-programs/postgraduate-coursework/course-list

including COMP9024 Data Structures and Algorithms, which itself is a prerequisite to many courses
that can be taken as part of the Graduate Certificate in Computing (program 7543), the Graduate
Diploma of Information Technology (program 5543), and the Masters of Information Technology
(program 8543). Students who have already covered the material presented in this course can get
exemption if they pass the corresponding exemption exam or have been exempted on the basis of
academic background. Both are part of the general procedure for advanced standing, exemption,
and substitution.

The aim of the course is to provide students with a solid foundation on fundamental program-
ming concepts and principles, develop problem solving skills, and master the programming language
Python. Students will learn to design solutions to a broad range of problems and implement those
solutions in the form of small to medium programs, using appropriate programming techniques and
tools.

4 Student learning outcomes
e Know how to design, implement and test programs written in a language with procedural,
object-oriented, and functional constructs.

e Be proficient in the Python language, and know what happens behind the scene especially in
terms of memory use.

e Be proficient in designing and implementing widgets.
e Have good knowledge of fundamental data structures and algorithms.
e Know how to design programs to solve small to medium scale problems.

e Be able to write clear, reliable, well-structured, well-tested, well-documented programs in
Python.

e Be proficient in the use of appropriate tools, debuggers in particular.
e Know how to represent data with linked lists, stacks, queues, heaps, and binary trees.

e Know how to use and be able to implement searching and sorting algorithms.

5 Overall approach to learning and teaching

You know that at university, the focus is on your self-directed search for knowledge. Lectures, con-
sultations, online discussions, textbook and recommended reading, quizzes, lab exercises assignments

https://www.engineering.unsw.edu.au/computer-science-engineering/courses-programs/postgraduate-coursework/graduate-certificate
https://www.engineering.unsw.edu.au/computer-science-engineering/courses-programs/postgraduate-coursework/graduate-diploma
https://www.engineering.unsw.edu.au/computer-science-engineering/courses-programs/postgraduate-coursework/graduate-diploma
https://www.engineering.unsw.edu.au/computer-science-engineering/courses-programs/postgraduate-coursework/master-of-information-technology
https://www.engineering.unsw.edu.au/computer-science-engineering/courses-programs/postgraduate-coursework/advanced-standing-exemption-substitution/exemption-exam
https://www.engineering.unsw.edu.au/computer-science-engineering/courses-programs/enrolment-information/postgraduate-coursework/advanced-standing-exemption
https://www.engineering.unsw.edu.au/computer-science-engineering/courses-programs/enrolment-information/postgraduate-coursework/advanced-standing-exemption

and exams are all provided as a service to assist you in this endeavour. It is your choice as to how
much work you do in this course, whether it is preparation for classes, completion of assignments,
study for exams or seeking assistance or extra work to extend and clarify your understanding. You
must choose the approach that best suits your learning style and goals in this course. Still note
that the University expects you to do about 150 hours work for this course—including lectures and
time spent on self-study and assignments. Of course this will vary according to your aims. The
course is designed in such a way that passing the course will only require a good understanding of
the fundamental notions as well as good practical skills, thanks to regular work. If your aim is to
obtain a high distinction then you will need to invest more time in this course.

6 Teaching strategies

The 3 hour lectures, held on Thursdays, introduce the material, and are designed to provide insight
and help acquire good learning strategies. Extra 1 hour lectures, held on Mondays, are meant
to further help beginners with the more basic aspects programming and Python, but everyone is
welcome to attend. Consultations are for individual contact, to help resolve more individual issues.
Online discussions are for exchanges being part of a community, where everyone seeks support and
provides support to others on any matter than is of interest to other students. From week 2 to
week 11 included, programming quizzes will be released after the Thursday lecture and your answers
should be submitted by midnight on Wednesday of the following week. This will help you master
the fundamental notions and techniques that will have been presented during lectures up to the
previous week, keep up to date with the current material, and give you confidence that you are well
on track. Assignments will allow you to turn theory into practice, transform passive knowledge into
active knowledge, design solutions to problems, and experience the many ways of making mistakes
and correcting them when translating an algorithmic solution to an implementation. There will be
two assignments, due at the end of week 6 and week 12, respectively.

7 Assessment

The assessment for this course will be broken down as follows.

’ Assesment item \ Maximum mark ‘
10 weekly programming quizzes 20
Assignment 1 10
Assignment 2 10
Midterm exam (2 hours) 20
Final exam (3 hours) 40

The final mark will the arithmetic mean of all assessment items. To pass the course, you will need
to get a total mark of 50 at least.

Programming quizzes will be released from week 2 to week 11 after the Thursday lecture. Typically,
you will have to complete incomplete programs, allowing you to check your understanding of the
fundamental notions that will be presented during lectures up to the current week. Your answers
to the weekly quizzes should be submitted by midnight on Wednesday of the following week. Every
quiz will be worth up to 2 marks.

Longer programming exercises, so-called lab exercices, will be released from week 1 to week 12 to
help you practice in more depth the key material presented in the previous week and as a preparation
for the midterm and final exams. More precisely, most exercises in this series will have one or more
flagged questions, some of which will be exam questions modulo some small variations. Lab exercises
are not assessed. Solutions to lab exercises are released about one week after they have been made
available.

The two assignments will be programming assignments. Each of the assignments will require you to
develop problem-solving skills, the ability to design, implement and test solutions to problems, and
to gradually acquire all the skills listed in Section 4.

Quizzes as well as assignments will be automatically assessed for correctness on a battery of tests.

The assignments give you the chance to practice what you have learnt and design solutions to
common, small to medium scale problems. The learning benefits will be greater if you start working
on the assignments early enough; do not leave your assignments until the last minute. The maximum
mark obtainable reduces by 1 mark per day late. Thus if students A and B hand in assignments
worth 9 and 6, both two days late, then the maximum mark obtainable is 8, so A gets min(9,8) = 8
and B gets min(6,8) = 6.

Note that if you want help with your programs, you should make an appointment for consultation
and present an up-to-date listing that is reasonably well laid out and documented. You must also
bring evidence of having taken reasonable steps to solve the problem yourself. Do not send an email
to the lecturer in charge of the form: My program is attached. How does it come it does not work?

For the midterm exam, which will take place in computer labs, you will have to write short programs,
that will be variants of some of the flagged programs of the lab questions given before the midterm
exam.

The format of the final exam will be the same as the format of the midterm exam.

It should be noted that no supplementary midterm exam will be offered. Students unable to attend
the midterm exam due to illness should submit a request for special consideration within seven days
after the exam. Students whose requests are granted will have their midterm component computed
on the basis of their results in the final exam. Students whose requests are denied will receive zero
mark for the midterm. A supplementary final exam will be offered only to students who submit

a request for special consideration meeting the School’s usual criteria (see the above) within seven
days of the final exam, and perform at 50% or better in the midterm exam. (Students who were
offered special consideration on the midterm exam and also request special consideration on the final
will be handled at the discretion of the lecturer in charge, but will be expected to prove exceptional
circumstances for both the midterm and final.) Please note that lodging an application for special
consideration does not guarantee that you will be granted the opportunity to sit the supplementary
exam. A supplementary final exam will only be offered to students who have been prevented from
taking an end of session examination, and whose circumstances have improved considerably in the
period since the exam was held. Students who apply for special consideration must be available
during this period to sit the exam. No other opportunities to sit the final exam will be offered.

8 Academic honesty and plagiarism

UNSW has an ongoing commitment to fostering a culture of learning informed by academic integrity.
All UNSW staff and students have a responsibility to adhere to this principle of academic integrity.
Plagiarism undermines academic integrity and is not tolerated at UNSW. Plagiarism at UNSW is
defined as using the words or ideas of others and passing them off as your own.

If you haven’t done so yet, please take the time to read the full text of
UNSW’s policy regarding academic honesty and plagiarism
The pages below describe the policies and procedures in more detail:
e Student Code Policy
e Plagiarism Policy Statement

e Plagiarism Procedure

e Student Misconduct Procedure

9 Course schedule

The following table outlines a provisional schedule for this course. In the Date column, L refers to
the lectures, A to the due date of an assignment (midnight of that day), Q to the due date of a quiz
(midnight of that day), and E to an exam. Lecture contents is described very roughly, and subjected
to adjustments.

https://student.unsw.edu.au/plagiarism
https://www.gs.unsw.edu.au/policy/documents/studentcodepolicy.pdf
https://www.gs.unsw.edu.au/policy/documents/plagiarismpolicy.pdf
https://www.gs.unsw.edu.au/policy/documents/plagiarismprocedure.pdf
https://www.gs.unsw.edu.au/policy/documents/studentmisconductprocedures.pdf

] Week ‘ Date ‘ Lecture contents ‘ Assessment
1 L: 24 Jul ; 27 Jul | Introduction to writing and executing
Python code
Introduction to operators, lists, dictio-
naries, strings, control structures
2 L: 31 Jul ; 3 Aug | Control structures
Functions
Randomness and simulation
Documentation and testing
3 L: 7 Aug ; 10 Aug | Lists, tuples
Q: 9 Aug Dictionaries, sets Quiz 1
Debugging
4 L: 14 Aug ; 17 Aug | Strings, iterators, generators
Q: 16 Aug Selected modules Quiz 2
Identity versus equality, references
5 L: 21 Aug ; 24 Aug | Operations on files
Q: 23 Aug Embedded structures Quiz 3
Regular expressions
6 L: 28 Aug ; 31 Aug | Recursion, memoisation
Q: 30 Aug Quiz 4
A: 3 Sep Assignment 1
7 L: 4 Sep ; 7 Sep Classes, objects
Q: 6 Sep Dynamic programming Quiz 5
E: 8 Sep Midterm exam
8 L: 11 Sep ; 14 Sep | Linked lists
Q: 13 Sep The numpy module Quiz 6
9 L: 18 Sep ; 21 Sep | Stacks
Q: 20 Sep Queues Quiz 7
Mid-session recess
10 L: 5 Oct Trees, tries
Q: 4 Oct Inheritance Quiz 8
11 L: 9 Oct ; 12 Oct | Hashing
Q: 11 Oct Decorators Quiz 9
12 L: 16 Oct ; 19 Oct | Heaps
Q: 18 Oct Sorting Quiz 10
A: 22 Oct Assignment 2

10 Resources for students

Announcements, lecture notes, example programs, jupyter notebooks, lab exercises and solutions,
quizzes and assignment specifications are made available at the course’s homepage:

http://www.cse.unsw.edu.au/~cs9021

The platform might switch from WebCMS to Ed when session starts.
There is no required textbook, though you can consider the following as the “official” textbook for
this course:

Bill Lubanovic: Introducing Python: Modern Computing in Simple Packages. O’Reilly Media

For the syntactic aspects of the language, the official documentation will be complemented with
Jupyter notebook sheets. Lecture notes will cover some conceptual and algorithmic topics, meant to
provide insight and not repeat what is being abundantly described is easily available books and online
resources. Often, a Google search will be the most effective way to get answers to your questions.

Here are some recommendations, but you will very certainly come across other resources, and you
are encouraged to share your great findings with everyone. ..

For easy introductions to Python, I recommend:

John Zelle: Python Programming: An Introduction to Computer Science

They can be complemented with:

Brad Miller and David Ranum: Problem Solving with Algorithms and Data Structures Using Python
and with:

Allen B. Downey: How to think like a computer scientist: Learning with Python
For students with a good knowledge of Python already, I recommend:
Luciano Ramalho: Fluent Python

and

David Beazley and Brian K. Jones: Python Cookbook

Official references are richer and often invaluable:

The Python Tutorial

http://www.cse.unsw.edu.au/~cs9021
https://fbeedle.com
http://runestoneinteractive.org/library.html
http://runestoneinteractive.org/library.html
http://shop.oreilly.com/product/0636920032519.do
http://chimera.labs.oreilly.com/books/1230000000393
https://docs.python.org/3.4/tutorial/

They also offer the most complete coverage of the language:
The Python Standard Library

Every week, there will be a widget, but to understand all aspects of their code, some resources are
necessary. The official reference:

Tkinter 8.5 reference: a GUI for Python

does the job perfectly.

11 Course evaluation and development

Student feedback on this course will be obtained via electronic survey at the end of session. Student
feedback is taken seriously, and continual improvements are made to the course based in part on
this feedback. Feedback from last session was very good, the main criticism being that the workload
was excessive. To address this criticism, the number of assignments is being reduced from three to
two. Last session, the lecture was delivered twice, the idea being that the class could be partitioned
into beginners versus students with some programming background, so that the pace at which the
material would be presented, the teaching style, and the focus of each lecture, would be different and
appropriate to each cohort of students (of course, the basic expectations and learning objectives of the
course are still the same for all). The experience was moderately successful as many students chose
their lecture time based on personal convenience with respect to general timetabling, so both lectures
had both beginners and students with some experience, so the very significant extra time needed to
implement this strategy was more a cost to the lecturer than an investment for the students. This
session, another technique will be tried, still to address the difficulties inherent to the class consisting
of students with vastly different backgrounds and needs: an extra 1 hour lecture is being offered
which in spirit, is between a lecture and a lab, meant to further help beginners with the more basic
aspects programming and Python. Beginners are strongly advised to attend that extra lecture. Still
beginners and non-beginners alike are welcome to attend.

Also, students are strongly encouraged to let the lecturer in charge know of any problems, as soon
as they emerge. Suggestions (or even complaints!) will be listened to very openly, positively, con-
structively and thankfully, and every action will be taken to fix any issue or improve the students’
learning experience.

10

https://docs.python.org/3.4/library/index.html
http://infohost.nmt.edu/tcc/help/pubs/tkinter/web/index.html

12 Other matters

Lectures will take place each week of session, from week 1 to week 12, in Mathews Theatre A (K-
D23-201) on Mondays from 3pm to 4pm, and in Keith Burrows Theatre (K-J14-G5) on Thursdays
from 6pm to 9pm. Lectures for both classes will be recorded any both recordings will be available
to all students. Though lectures are recorded, attendance to lectures is highly recommended. The
material that will be covered during a given lecture will be posted on the web as sample programs
and occasionally some lecture notes (pdf format), at the latest by noon on the day when the lecture
takes place. Support for the syntactic aspects of the language is provided in the form of Jupyter
notebook sheets, all made available in week 1, with extra guidance provided during the Monday
lectures.

Practical work can be conducted either on the School’s lab computers or on your own computer.
If your computer is a Windows machine then you might consider installing Linux. Information on
dOlng SO IS aVallable at http://taggi.cse.unsw.edu.au/FAQ/Running_your_computer/.

The labs will help you get used to Unix and the setup of the computing laboratory.

A good starting point to learn more about the computing environment and available resources is

http://taggi.cse.unsw.edu.au/FAQ/
You should have read carefully the page on Student Conduct.

You might also find the following web sites useful.

e CSE Help Desk:

https://www.engineering.unsw.edu.au/computer-science-engineering/about-us/organisational-structure/computer-support-group/help-desk
[] UNS vV hbl"al'y https://www.library.unsw.edu.au
[] UNS AY, Leal"rllng CenteI‘ http://www.lc.unsw.edu.au

e Occupational Health and Safety policies:

https://www.engineering.unsw.edu.au/computer-science-engineering/help-resources/health-safety/

o Equlty and DlVel"Slty lSSlleS https://student.unsw.edu.au/disability/

11

http://taggi.cse.unsw.edu.au/FAQ/Running_your_computer/
http://taggi.cse.unsw.edu.au/FAQ/
https://www.gs.unsw.edu.au/policy/documents/studentcodepolicy.pdf
https://www.engineering.unsw.edu.au/computer-science-engineering/about-us/organisational-structure/computer-support-group/help-desk
https://www.library.unsw.edu.au
http://www.lc.unsw.edu.au
https://www.engineering.unsw.edu.au/computer-science-engineering/help-resources/health-safety/
https://student.unsw.edu.au/disability/

	Course staff
	Course details
	Course aims
	Student learning outcomes
	Overall approach to learning and teaching
	Teaching strategies
	Assessment
	Academic honesty and plagiarism
	Course schedule
	Resources for students
	Course evaluation and development
	Other matters

