9. Parameter Treewidth

COMP6741: Parameterized and Exact Computation

Serge Gaspers1,2

1School of Computer Science and Engineering, UNSW Australia
2Optimisation Resarch Group, NICTA

Semester 2, 2015
1. Algorithms for trees
2. Tree decompositions
3. Monadic Second Order Logic
4. Dynamic Programming over Tree Decompositions
 - Sat
 - CSP
5. Further Reading
Outline

1. Algorithms for trees
2. Tree decompositions
3. Monadic Second Order Logic
4. Dynamic Programming over Tree Decompositions
 - Sat
 - CSP
5. Further Reading
Recall: An independent set of a graph $G = (V, E)$ is a set of vertices $S \subseteq V$ such that $G[S]$ has no edge.

#Independent Sets on Trees

Input: A tree $T = (V, E)$

Output: The number of independent sets of T.

- Design a polynomial time algorithm for #Independent Sets on Trees
Select an arbitrary root r of T

Bottom-up dynamic programming (starting at the leaves) to compute, for each subtree T_x rooted at x the values

- $\#_{in}(x)$: the number of independent sets of T_x containing x, and
- $\#_{out}(x)$: the number of independent sets of T_x not containing x.

If x is a leaf, then $\#_{in}(x) = \#_{out}(x) = 1$

Otherwise,

$$\#_{in}(x) = \prod_{y \text{ child of } x} \#_{out}(y)$$

and

$$\#_{out}(x) = \prod_{y \text{ child of } x} (\#_{in}(y) + \#_{out}(y))$$

The final result is $\#_{in}(r) + \#_{out}(r)$
Exercise

Recall: A dominating set of a graph $G = (V, E)$ is a set of vertices $S \subseteq V$ such that $N_G[S] = V$.

#Dominating Sets on Trees

Input: A tree $T = (V, E)$

Output: The number of dominating sets of T.

- Design a polynomial time algorithm for **#Dominating Sets on Trees**
Select an arbitrary root \(r \) of \(T \)

Bottom-up dynamic programming (starting at the leaves) to compute, for each subtree \(T_x \) rooted at \(x \) the values

- \(\#in(x) \): the number of dominating sets of \(T_x \) containing \(x \),
- \(\#outDom(x) \): the number of dominating sets of \(T_x \) not containing \(x \), and
- \(\#outNd(x) \): the number of vertex subsets of \(T_x \) dominating \(V(T_x) \setminus \{x\} \).

If \(x \) is a leaf, then \(\#in(x) = \#outNd(x) = 1 \) and \(\#outDom(x) = 0 \).

Otherwise,

\[
\begin{align*}
\#in(x) &= \prod_{y \text{ child of } x} (\#in(y) + \#outDom(y) + \#outNd(y)), \\
\#outDom(x) &= \prod_{y \text{ child of } x} (\#in(y) + \#outDom(y)) \\
&\quad - \prod_{y \text{ child of } x} \#outDom(y) \\
\#outNd(x) &= \prod_{y \text{ child of } x} \#outDom(y)
\end{align*}
\]

The final result is \(\#in(r) + \#outDom(r) \)
1. Algorithms for trees

2. Tree decompositions

3. Monadic Second Order Logic

4. Dynamic Programming over Tree Decompositions
 - Sat
 - CSP

5. Further Reading
Idea: decompose the problem into subproblems and combine solutions to subproblems to a global solution.

Parameter: overlap between subproblems.
Tree decompositions (by example)

- A graph G

\[
\begin{align*}
&\text{A, } b, c, d, e, f, h, i, j, k \\
&\text{a, b, c, d, e, f, h, i, j, k}
\end{align*}
\]
Tree decompositions (by example)

- A graph G

- A tree decomposition of G
Tree decompositions (by example)

- A graph G

- A tree decomposition of G

Conditions:
Tree decompositions (by example)

- A graph G

- A tree decomposition of G

Conditions: covering
Tree decompositions (by example)

- A graph G

- A tree decomposition of G

Conditions: covering and connectedness.
Tree decomposition (more formally)

- Let G be a graph, T a tree, and γ a labeling of the vertices of T by sets of vertices of G.

- We refer to the vertices of T as “nodes”, and we call the sets $\gamma(t)$ “bags”.

- The pair (T, γ) is a tree decomposition of G if the following three conditions hold:

 1. For every vertex v of G there exists a node t of T such that $v \in \gamma(t)$.
 2. For every edge vw of G there exists a node t of T such that $v, w \in \gamma(t)$ (“covering”).
 3. For any three nodes t_1, t_2, t_3 of T, if t_2 lies on the unique path from t_1 to t_3, then $\gamma(t_1) \cap \gamma(t_3) \subseteq \gamma(t_2)$ (“connectedness”).
Treewidth

- The width of a tree decomposition \((T, \gamma)\) is defined as the maximum \(|\gamma(t)| - 1\) taken over all nodes \(t\) of \(T\).
- The treewidth \(\text{tw}(G)\) of a graph \(G\) is the minimum width taken over all its tree decompositions.
Basic Facts

- Trees have treewidth 1.
- Cycles have treewidth 2.
- Consider a tree decomposition \((T, \gamma)\) of a graph \(G\) and two adjacent nodes \(i, j\) in \(T\). Let \(T_i\) and \(T_j\) denote the two trees obtained from \(T\) by deleting the edge \(ij\), such that \(T_i\) contains \(i\) and \(T_j\) contains \(j\). Then, every vertex contained in both \(\bigcup_{a \in V(T_i)} \gamma(a)\) and \(\bigcup_{b \in V(T_j)} \gamma(b)\) is also contained in \(\gamma(i) \cap \gamma(j)\).
- The complete graph on \(n\) vertices has treewidth \(n - 1\).
- If a graph \(G\) contains a clique \(K_r\), then every tree decomposition of \(G\) contains a node \(t\) such that \(K_r \subseteq \gamma(t)\).
Treewidth

Input: Graph $G = (V, E)$, integer k

Parameter: k

Question: Does G have treewidth at most k?

- Treewidth is **NP-complete**.
- Treewidth is **FPT**, due to a $k^{O(k^3)} \cdot |V|$ time algorithm by [Bodlaender '96]
Easy problems for bounded treewidth

- Many graph problems that are polynomial time solvable on trees are FPT with parameter treewidth.
- Two general methods:
 - Dynamic programming: compute local information in a bottom-up fashion along a tree decomposition
 - Monadic Second Order Logic: express graph problem in some logic formalism and use a meta-algorithm
Monadic Second Order Logic

- **Monadic Second Order (MSO) Logic** is a powerful formalism for expressing graph properties. One can quantify over vertices, edges, vertex sets, and edge sets.

- **Courcelle’s theorem:** Checking whether a graph G satisfies an MSO property is FPT parameterized by the treewidth of G plus the length of the MSO expression. [Courcelle, '90]

- **Arnborg et al.’s generalization:** Several generalizations. For example, FPT algorithm for parameter $\text{tw}(G) + |\phi(X)|$ that takes as input a graph G and an MSO sentence $\phi(X)$ where X is a free (non-quantified) vertex set variable, that computes a minimum-sized set of vertices X such that $F(X)$ is true in G. Also, the input vertices and edges may be colored and their color can be tested. [Arnborg, Lagergren, Seese, '91]
Elements of MSO

An MSO formula has

- variables representing vertices \((u, v, \ldots)\), edges \((a, b, \ldots)\), vertex subsets \((X, Y, \ldots)\), or edge subsets \((A, B, \ldots)\) in the graph

- atomic operations
 - \(u \in X\): testing set membership
 - \(X = Y\): testing equality of objects
 - \(\text{inc}(u, a)\): incidence test “is vertex \(u\) an endpoint of the edge \(a\)?”

- propositional logic on subformulas: \(\phi_1 \land \phi_2, \phi_1 \lor \phi_2, \neg \phi_1, \phi_1 \Rightarrow \phi_2\)

- Quantifiers: \(\forall X \subseteq V, \exists A \subseteq E, \forall u \in V, \exists a \in E\), etc.
We can define some shortcuts:

- $u \neq v$ is $\neg(u = v)$
- $X \subseteq Y$ is $\forall v \in V \ (v \in X) \Rightarrow (v \in Y)$
- $\forall v \in X \ \varphi$ is $\forall v \in V (v \in X) \Rightarrow \varphi$
- $\exists v \in X \ \varphi$ is $\exists v \in V (v \in X) \land \varphi$
- $\text{adj}(u, v)$ is $(u \neq v) \land \exists a \in E \ (\text{inc}(u, a) \land \text{inc}(v, a))$
Example: 3-Coloring,

- “there are three independent sets in $G = (V, E)$ which form a partition of V”
- $3\text{COL} := \exists R \subseteq V \ \exists G \subseteq V \ \exists B \subseteq V$
 \begin{align*}
 &\text{partition}(R, G, B) \land \text{independent}(R) \land \text{independent}(G) \land \text{independent}(B)
 \\
 \text{where}
 &\text{partition}(R, G, B) := \forall v \in V \ ((v \in R \land v \notin G \land v \notin B) \lor (v \notin R \land v \in G \land v \notin B) \lor (v \notin R \land v \notin G \land v \in B))
 \\
 \text{and}
 &\text{independent}(X) := \neg(\exists u \in X \ \exists v \in X \ \text{adj}(u, v))

\end{align*}
By Courcelle's theorem and our $3COL$ MSO formula, we have:

Theorem 1

3-Colouring is FPT with parameter treewidth.
A *domatic* k-*partition* of a graph $G = (V, E)$ is a partition (D_1, \ldots, D_k) of V into k dominating sets of G.

(sol+tw)-Domatic Partition

Input: graph G, integer k

Parameter: $k + \text{tw}(G)$

Question: Does G have a domatic k-partition.

- Show that *(sol+tw)-Domatic Partition* is *FPT* using Courcelle's theorem
\[\exists D_1 \subseteq V \ \exists D_2 \subseteq V \ \ldots \ \exists D_k \subseteq V \]

\[\text{partition}(D_1, D_2, \ldots, D_k) \land \]

\[\forall v \in V \ dom(v, D_1) \land \cdots \land dom(v, D_k) \]

with

\[dom(v, X) := v \in X \lor \exists x \in X \ adj(v, w) \]
Let us use treewidth to solve a Logic Problem
- associate a graph with the instance
- take the tree decomposition of the graph
- most widely used: primal graphs, incidence graphs, and dual graphs of formulas.
CNF Formula $F = C \land D \land E \land F \land G$ where $C = (u \lor v \lor \neg y)$, $D = (\neg u \lor z \lor y)$, $E = (\neg v \lor w)$, $F = (\neg w \lor x)$, $G = (x \lor y \lor \neg z)$.

This gives rise to parameters **primal treewidth**, **dual treewidth**, and **incidence treewidth**.
Formally

Definition 2

Let F be a CNF formula with variables $\text{var}(F)$ and clauses $\text{cla}(F)$. The **primal graph** of F is the graph with vertex set $\text{var}(F)$ where two variables are adjacent if they appear together in a clause of F. The **dual graph** of F is the graph with vertex set $\text{cla}(F)$ where two clauses are adjacent if they have a variable in common. The **incidence graph** of F is the bipartite graph with vertex set $\text{var}(F) \cup \text{cla}(F)$ where a variable and a clause are adjacent if the variable appears in the clause. The **primal treewidth**, **dual treewidth**, and **incidence treewidth** of F is the treewidth of the primal graph, the dual graph, and the incidence graph of F, respectively.
Lemma 3

The incidence treewidth of F is at most the primal treewidth of F plus 1.

Proof.

Start from a tree decomposition (T, γ) of the primal graph with minimum width. For each clause C:

- There is a node t of T with $\text{var}(C) \subseteq \gamma(t)$, since $\text{var}(C)$ is a clique in the primal graph.
- Add to t a new neighbor t' with $\gamma(t') = \gamma(t) \cup \{C\}$.
Lemma 4

The incidence treewidth of F is at most the dual treewidth of F plus 1.

Proof.

Exercise.
Lemma 4

The incidence treewidth of F is at most the dual treewidth of F plus 1.

Proof.

Exercise.

Primal and dual treewidth are incomparable.

- One big clause alone gives large primal treewidth.
- $\{\{x, y_1\}, \{x, y_2\}, \ldots, \{x, y_n\}\}$ gives large dual treewidth.
SAT parameterized by treewidth

Input: A CNF formula F

Question: Is there an assignment of truth values to $\text{var}(F)$ such that F evaluates to true?

Note: If SAT is FPT parameterized by incidence treewidth, then SAT is FPT parameterized by primal treewidth and by dual treewidth.
CNF Formula $F = C \land D \land E \land F \land G$ where $C = (u \lor v \lor \neg y)$, $D = (\neg u \lor z \lor y)$, $E = (\neg v \lor w)$, $F = (\neg w \lor x)$, $G = (x \lor y \lor \neg z)$

Auxiliary graph:

- MSO Formula: “There exists an independent set of literal vertices that dominates all the clause vertices.”
- The treewidth of the auxiliary graph is at most twice the treewidth of the incidence graph plus one.
Theorem 5

SAT is FPT for each of the following parameters: primal treewidth, dual treewidth, and incidence treewidth.
Outline

1. Algorithms for trees
2. Tree decompositions
3. Monadic Second Order Logic
4. **Dynamic Programming over Tree Decompositions**
 - Sat
 - CSP
5. Further Reading
Advantages of Courcelle’s theorem:
- general, applies to many problems
- easy to obtain FPT results

Drawback of Courcelle’s theorem
- the resulting running time depends non-elementarily on the treewidth t and the length ℓ of the MSO-sentence, i.e., a tower of 2’s whose height is $\omega(1)$.
Dynamic programming over tree decompositions

Idea: extend the algorithmic methods that work for trees to tree decompositions.

Step 1 Compute a minimum width tree decomposition using Bodlaender’s algorithm

Step 2 Transform it into a standard form making computations easier

Step 3 Bottom-up Dynamic Programming (from the leaves of the tree decomposition to the root)
A *nice* tree decomposition \((T, \gamma)\) has 4 kinds of bags:

- **leaf node**: leaf \(t\) in \(T\) and \(|\gamma(t)| = 1\)
- **introduce node**: node \(t\) with one child \(t'\) in \(T\) and \(\gamma(t) = \gamma(t') \cup \{x\}\)
- **forget node**: node \(t\) with one child \(t'\) in \(T\) and \(\gamma(t) = \gamma(t') \setminus \{x\}\)
- **join node**: node \(t\) with two children \(t_1, t_2\) in \(T\) and \(\gamma(t) = \gamma(t_1) = \gamma(t_2)\)

Every tree decomposition of width \(w\) of a graph \(G\) on \(n\) vertices can be transformed into a nice tree decomposition of width \(w\) and \(O(w \cdot n)\) nodes in polynomial time [Kloks '94].
Outline

1 Algorithms for trees

2 Tree decompositions

3 Monadic Second Order Logic

4 Dynamic Programming over Tree Decompositions
 - Sat
 - CSP

5 Further Reading
Dynamic programming: primal treewidth

- Compute a nice tree decomposition \((T, \gamma)\) of \(F\)'s primal graph with minimum width [Bodlaender ’96; Kloks ’94]
- Select an arbitrary root \(r\) of \(T\)
- Denote \(T_t\) the subtree of \(T\) rooted at \(t\)
- Denote \(\gamma_\downarrow(t) = \{x \in \gamma(t') : t' \in V(T_t)\}\)
- Denote \(F_\downarrow(t) = \{C \in F : \text{var}(C) \subseteq \gamma_\downarrow(t)\}\)
- For a node \(t\) and an assignment \(\tau : \gamma(t) \rightarrow \{0, 1\}\), define

\[
\text{sat}(t, \tau) = \begin{cases}
1 & \text{if } \tau \text{ can be extended to a} \\
& \text{satisfying assignment of } F_\downarrow(t) \\
0 & \text{otherwise.}
\end{cases}
\]
DP: primal treewidth II

\[
sat(t, \tau) = \begin{cases}
1 & \text{if } \tau \text{ can be extended to a satisfying assignment of } F_{\downarrow}(t) \\
0 & \text{otherwise.}
\end{cases}
\]

Denote \(x^1 = x \) and \(x^0 = \neg x \).

We will view \(F \) as a set of clauses and each clause as a set of literals; e.g. \(F = \{\{x, \neg y\}, \{\neg x, y, z\}\} \) instead of \(F = (x \lor \neg y) \land (\neg x \lor y \lor z) \)

- **leaf node:**
\[sat(t, \tau) = \begin{cases} 1 & \text{if } \tau \text{ can be extended to a} \\
& \text{satisfying assignment of } F_{\downarrow}(t) \\
0 & \text{otherwise.} \end{cases} \]

Denote \(x^1 = x \) and \(x^0 = \neg x \).

We will view \(F \) as a set of clauses and each clause as a set of literals; e.g. \(F = \{ \{ x, \neg y \}, \{ \neg x, y, z \} \} \) instead of \(F = (x \lor \neg y) \land (\neg x \lor y \lor z) \).

- **leaf node:** \(sat(t, \{ x = a \}) = \begin{cases} 1 & \text{if } \{ x^1-a \} \notin F \\
0 & \text{otherwise} \end{cases} \)

- **introduce node:**
\[\text{sat}(t, \tau) = \begin{cases} 1 & \text{if } \tau \text{ can be extended to a} \\ & \text{satisfying assignment of } F_{\downarrow}(t) \\ 0 & \text{otherwise.} \end{cases} \]

Denote \(x^1 = x \) and \(x^0 = \neg x \).

We will view \(F \) as a set of clauses and each clause as a set of literals; e.g. \(F = \{ \{x, \neg y\}, \{\neg x, y, z\}\} \) instead of \(F = (x \lor \neg y) \land (\neg x \lor y \lor z) \)

- **leaf node:** \(\text{sat}(t, \{x = a\}) = \begin{cases} 1 & \text{if } \{x^{1-a}\} \notin F \\ 0 & \text{otherwise} \end{cases} \)

- **introduce node:** \(\gamma(t) = \gamma(t') \cup \{x\} \).

\[
\text{sat}(t, \{x = a\} \cup \{x_i = a_i\}_i) = \text{sat}(t', \{x_i = a_i\}_i) \\
\land \#C \in F : C \subseteq \{x^{1-a}\} \cup \{x^{1-a_i}_i\}.
\]
DP: primal treewidth III

- *forget node:*

\[\gamma(t) = \gamma(t') \{ x \} \]

\[\text{sat}(t, \{ x_i = a_i \}) = \text{sat}(t', \{ x_i = 0 \} \cup \{ x_i = a_i \}) \lor \text{sat}(t', \{ x_i = 1 \} \cup \{ x_i = a_i \}) \]

\[\text{join node:} \]

\[\text{sat}(t, \{ x_i = a_i \}) = \text{sat}(t', \{ x_i = a_i \}) \land \text{sat}(t', \{ x_i = a_i \}) \]

Finally:

\[F \text{ is satisfiable iff } \exists \tau: \gamma(r) \rightarrow \{ 0, 1 \} \text{ such that } \text{sat}(r, \tau) = 1 \]

Running time:

\[O^*(2^k) \]

where \(k \) is the primal treewidth of \(F \), supposed we are given a minimum width tree decomposition.

Also extends to computing the number of satisfying assignments.
• **forget node**: $\gamma(t) = \gamma(t') \setminus \{x\}$.

$$\text{sat}(t, \{x_i = a_i\}_i) = \text{sat}(t', \{x = 0\} \cup \{x_i = a_i\}_i)$$
$$\lor \text{sat}(t', \{x = 1\} \cup \{x_i = a_i\}_i).$$

• **join node**:

Finally: F is satisfiable iff $\exists \tau: \gamma(r) \rightarrow \{0, 1\}$ such that $\text{sat}(r, \tau) = 1$.
forget node: $\gamma(t) = \gamma(t') \setminus \{x\}$.

\[
sat(t, \{x_i = a_i\}_i) = sat(t', \{x = 0\} \cup \{x_i = a_i\}_i) \\
\lor sat(t', \{x = 1\} \cup \{x_i = a_i\}_i).
\]

join node:

\[
sat(t, \{x_i = a_i\}_i) = sat(t', \{x_i = a_i\}_i) \\
\land sat(t', \{x_i = a_i\}_i).
\]

- **forget node**: $\gamma(t) = \gamma(t') \setminus \{x\}$.

 $$
 \text{sat}(t, \{x_i = a_i\}_i) = \text{sat}(t', \{x = 0\} \cup \{x_i = a_i\}_i) \\
 \lor \text{sat}(t', \{x = 1\} \cup \{x_i = a_i\}_i).
 $$

- **join node**:

 $$
 \text{sat}(t, \{x_i = a_i\}_i) = \text{sat}(t', \{x_i = a_i\}_i) \\
 \land \text{sat}(t', \{x_i = a_i\}_i).
 $$

Finally: F is satisfiable iff $\exists \tau : \gamma(r) \rightarrow \{0, 1\}$ such that $\text{sat}(r, \tau) = 1$

- Running time: $O^*(2^k)$, where k is the primal treewidth of F, supposed we are given a minimum width tree decomposition
- Also extends to computing the number of satisfying assignments
Known treewidth based algorithms for SAT:

- $k =$ primal tw \hspace{2em} $k =$ dual tw \hspace{2em} $k =$ incidence tw
- $O^*(2^k)$ \hspace{2em} $O^*(2^k)$ \hspace{2em} $O^*(4^k)$

- It is still worth considering primal treewidth and dual treewidth.
- These algorithms all count the number of satisfying assignments.
1. Algorithms for trees

2. Tree decompositions

3. Monadic Second Order Logic

4. Dynamic Programming over Tree Decompositions
 - Sat
 - CSP

5. Further Reading
Constraint Satisfaction Problem

A **CSP** (Constraint Satisfaction Problem) has a **scope** $S = (s_1, \ldots, s_r)$ with $s_i \in X, i \in \{1, \ldots, r\}$, and a **constraint relation** R consisting of r-tuples of values in D. An assignment $\tau : X \rightarrow D$ satisfies a constraint $c = (S, R)$ if there exists a tuple (d_1, \ldots, d_r) in R such that $\tau(s_i) = d_i$ for each $i \in \{1, \ldots, r\}$.

Input: A set of variables X, a domain D, and a set of constraints C

Question: Is there an assignment $\tau : X \rightarrow D$ satisfying all the constraints in C?
Primal, dual, and incidence graphs are defined similarly as for SAT.

Theorem 6 ([Gottlob, Scarcello, Sideri ’02])

CSP is **FPT** for parameter primal treewidth if \(|D| = O(1) \).

- What if domains are unbounded?
- What if we consider incidence treewidth?
Unbounded domains

Theorem 7

CSP is \(W[1]\)-hard for parameter primal treewidth.
Unbounded domains

Theorem 7

CSP is $\mathsf{W}[1]$-hard for parameter primal treewidth.

Proof Sketch.

Parameterized reduction from CLIQUE.
Let $(G = (V, E), k)$ be an instance of CLIQUE.
Take k variables x_1, \ldots, x_k, each with domain V.
Add $\binom{k}{2}$ binary constraints $E_{i,j}$, $1 \leq i < j \leq k$.
A constraint $E_{i,j}$ has scope (x_i, x_j) and its constraint relation contains the tuple (u,v) if $uv \in E$.
The primal treewidth of this CSP instance is at most $k - 1$.
Theorem 8

CSP is \(W[1]\)-hard for parameter incidence treewidth and Boolean domain \((D = \{0, 1\})\).

Proof.

Exercise: reduction from \textsc{Clique}.

Hints: (1) Use Boolean variables \(x_{ij}\) with \(1 \leq i \leq k\) and \(1 \leq j \leq n\) with the meaning that \(x_{ij}\) is set to 1 if the \(i\)th vertex of the clique corresponds to the \(j\)th vertex in the graph.

(2) Add \(O(k^2)\) constraints enforcing that for each \(i \in \{1, \ldots, k\}\), exactly one \(x_{ij}\) is set to 1, and whenever two \(x_{ij}, x_{i'j'}\) with \(i \neq i'\) are set to 1, then vertices \(j\) and \(j'\) are adjacent in the graph.

(3) Show that a graph with a vertex cover of size \(q\) has treewidth at most \(q\).
Exercise

<table>
<thead>
<tr>
<th>tw-INDEPENDENT SET</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input:</td>
</tr>
<tr>
<td>Parameter:</td>
</tr>
<tr>
<td>Question:</td>
</tr>
</tbody>
</table>

Design an $O^*(2^t)$ time DP algorithm for tw-INDEPENDENT SET.

Hint: Proceed as for the presented SAT algorithm, storing the largest size of an independent set extending every in/out labeling of the vertices in a bag to all the vertices contained in bags in the current subtree of the tree decomposition.
Solution sketch

- Obtain a nice tree decomposition \((T, \gamma)\) of width \(t\) in polynomial time.
- Denote \(T_i\) the subtree of \(T\) rooted at node \(i\)
- Denote \(\gamma_\downarrow(i) = \{v \in \gamma(j) : j \in V(T_i)\}\)
- Denote \(G_\downarrow(i) = G[\gamma_\downarrow(i)]\)
- For each node \(i\) of \(T\), and each \(S \subseteq \gamma(i)\), compute \(\text{ind}(i, S)\), the size of a largest independent set of \(G_\downarrow(i)\) that contains all vertices of \(S\) and no vertex from \(\gamma(i) \setminus S\) by dynamic programming.
Solution sketch II

- For a leaf node i with $\gamma(i) = \{v\}$:

 \[
 \text{ind}(i, \emptyset) = 0
 \]
 \[
 \text{ind}(i, \{v\}) = 1
 \]

- For a forget node i with child i' and $\gamma(i) = \gamma(i') \setminus \{v\}$:

 \[
 \text{ind}(i, S) = \max(\text{ind}(i', S), \text{ind}(i', S \cup \{v\}))
 \]

- For an introduce node i with child i' and $\gamma(i) = \gamma(i') \cup \{v\}$:

 \[
 \text{ind}(i, S) = \begin{cases}
 -\infty & \text{if } G[S] \text{ contains an edge} \\
 \text{ind}(i', S \setminus \{v\}) + [1 \text{ if } v \in S] & \text{otherwise}
 \end{cases}
 \]

- For a join node i with children i' and i'':

 \[
 \text{ind}(i, S) = \text{ind}(i', S) + \text{ind}(i'', S) - |S|
 \]
Exercise

tw-Dominating Set

Input: Graph G, integer k, and a tree decomposition of G of width at most t

Parameter: t

Question: Does G have a dominating set of size k?

Design an $O^*(9^t)$ time DP algorithm for **tw-Dominating Set**. Can you even achieve an $O^*(4^t)$ time DP algorithm?

Hint: Use labeling (in dominating set) / (not in dominating set and needs to be dominated) / (not in dominating set but does not need to be dominated).
Obtain a nice tree decomposition (T, γ) of width t in polynomial time.

Denote T_i the subtree of T rooted at node i

Denote $\gamma \downarrow (i) = \{ v \in \gamma(j) : j \in V(T_i) \}$

Denote $G \downarrow (i) = G[\gamma \downarrow (i)]$

For each node i of T, and each labelling $\ell : \gamma (i) \rightarrow \{in, outDom, outNd\}$, compute the smallest size of a subset D of $\gamma \downarrow (i)$ such that $D \cap \gamma(i)$ is the set of vertices labelled in by ℓ, and that dominates all vertices from $\gamma \downarrow (i)$ except those that are labeled $outNd$ by ℓ by dynamic programming.

The running time depends on how join nodes are handled.

See Section 10.5 in [Niedermeier, '06] for details.
1 Algorithms for trees

2 Tree decompositions

3 Monadic Second Order Logic

4 Dynamic Programming over Tree Decompositions
 - Sat
 - CSP

5 Further Reading
Further Reading

