9. Parameter Treewidth

COMP6741: Parameterized and Exact Computation

Serge Gaspers¹²

¹School of Computer Science and Engineering, UNSW Australia ²Optimisation Resarch Group, NICTA

Semester 2, 2015

Outline

- Algorithms for trees
- 2 Tree decompositions
- Monadic Second Order Logic
- 4 Dynamic Programming over Tree Decompositions
 - Sat
 - CSP
- Further Reading

Outline

- Algorithms for trees
- 2 Tree decompositions
- Monadic Second Order Logic
- 4 Dynamic Programming over Tree Decompositions
 - Sat
 - CSP
- 5 Further Reading

Exercise

Recall: An independent set of a graph G=(V,E) is a set of vertices $S\subseteq V$ such that G[S] has no edge.

#Independent Sets on Trees

Input: A tree T = (V, E)

Output: The number of independent sets of T.

• Design a polynomial time algorithm for #INDEPENDENT SETS ON TREES

S. Gaspers (UNSW) Treewidth Semester 2, 2015 4

- ullet Select an arbitrary root r of T
- Bottom-up dynamic programming (starting at the leaves) to compute, for each subtree T_x rooted at x the values
 - #in(x): the number of independent sets of T_x containing x, and
 - #out(x): the number of independent sets of T_x not containing x.
- If x is a leaf, then #in(x) = #out(x) = 1
- Otherwise,

$$\begin{split} &\#in(x) = \Pi_{y \text{ child of } x} \ \#out(y) \text{ and} \\ &\#out(x) = \Pi_{y \text{ child of } x} \ (\#in(y) + \#out(y)) \end{split}$$

• The final result is #in(r) + #out(r)

Exercise

Recall: A dominating set of a graph G=(V,E) is a set of vertices $S\subseteq V$ such that $N_G[S]=V$.

#Dominating Sets on Trees

Input: A tree T = (V, E)

Output: The number of dominating sets of T.

 \bullet Design a polynomial time algorithm for $\#\mathrm{Dominating}\ \mathrm{Sets}\ \mathrm{on}\ \mathrm{Trees}$

S. Gaspers (UNSW) Treewidth Semester 2, 2015 6

- ullet Select an arbitrary root r of T
- ullet Bottom-up dynamic programming (starting at the leaves) to compute, for each subtree T_x rooted at x the values
 - #in(x): the number of dominating sets of T_x containing x,
 - #outDom(x): the number of dominating sets of T_x not containing x, and
 - #outNd(x): the number of vertex subsets of T_x dominating $V(T_x) \setminus \{x\}$.
- If x is a leaf, then #in(x) = #outNd(x) = 1 and #outDom(x) = 0.
- Otherwise,

$$\begin{split} \#in(x) &= \Pi_y \text{ child of } x \text{ } (\#in(y) + \#outDom(y) + \#outNd(y)), \\ \#outDom(x) &= \Pi_y \text{ child of } x \text{ } (\#in(y) + \#outDom(y)) \\ &- \Pi_y \text{ child of } x \text{ } \#outDom(y) \\ \#outNd(x) &= \Pi_y \text{ child of } x \text{ } \#outDom(y) \end{split}$$

• The final result is #in(r) + #outDom(r)

Outline

- Algorithms for trees
- 2 Tree decompositions
- Monadic Second Order Logic
- Oynamic Programming over Tree Decompositions
 - Sat
 - CSP
- 5 Further Reading

Algorithms using graph decompositions

Idea: decompose the problem into subproblems and combine solutions to subproblems to a global solution.

Parameter: overlap between subproblems.

• A graph G

A graph G

• A tree decomposition of G

ullet A graph G

• A tree decomposition of G

Conditions:

A graph G

• A tree decomposition of G

Conditions: covering

A graph G

• A tree decomposition of G

Conditions: covering and connectedness.

Tree decomposition (more formally)

- Let G be a graph, T a tree, and γ a labeling of the vertices of T by sets of vertices of G.
- \bullet We refer to the vertices of T as "nodes", and we call the sets $\gamma(t)$ "bags".
- \bullet The pair (T,γ) is a tree decomposition of G if the following three conditions hold:
 - **1** For every vertex v of G there exists a node t of T such that $v \in \gamma(t)$.
 - ② For every edge vw of G there exists a node t of T such that $v,w\in\gamma(t)$ ("covering").
 - **③** For any three nodes t_1, t_2, t_3 of T, if t_2 lies on the unique path from t_1 to t_3 , then $\gamma(t_1) \cap \gamma(t_3) \subseteq \gamma(t_2)$ ("connectedness").

Treewidth

- The *width* of a tree decomposition (T, γ) is defined as the maximum $|\gamma(t)| 1$ taken over all nodes t of T.
- \bullet The $treewidth \ {\sf tw}(G)$ of a graph G is the minimum width taken over all its tree decompositions.

Basic Facts

- Trees have treewidth 1.
- Cycles have treewidth 2.
- Consider a tree decomposition (T,γ) of a graph G and two adjacent nodes i,j in T. Let T_i and T_j denote the two trees obtained from T by deleting the edge ij, such that T_i contains i and T_j contains j. Then, every vertex contained in both $\bigcup_{a\in V(T_i)}\gamma(a)$ and $\bigcup_{b\in V(T_j)}\gamma(b)$ is also contained in $\gamma(i)\cap\gamma(j)$.
- The complete graph on n vertices has treewidth n-1.
- If a graph G contains a clique K_r , then every tree decomposition of G contains a node t such that $K_r \subseteq \gamma(t)$.

Complexity of Treewidth

Treewidth

Input: Graph G = (V, E), integer k

Parameter: k

Question: Does G have treewidth at most k?

- TREEWIDTH is NP-complete.
- ullet TREEWIDTH is FPT, due to a $k^{O(k^3)} \cdot |V|$ time algorithm by [Bodlaender '96]

Easy problems for bounded treewidth

- Many graph problems that are polynomial time solvable on trees are FPT with parameter treewdith.
- Two general methods:
 - Dynamic programming: compute local information in a bottom-up fashion along a tree decomposition
 - Monadic Second Order Logic: express graph problem in some logic formalism and use a meta-algorithm

Outline

- Algorithms for trees
- 2 Tree decompositions
- Monadic Second Order Logic
- 4 Dynamic Programming over Tree Decompositions
 - Sat
 - CSP
- 5 Further Reading

Monadic Second Order Logic

- Monadic Second Order (MSO) Logic is a powerful formalism for expressing graph properties. One can quantify over vertices, edges, vertex sets, and edge sets.
- Courcelle's theorem: Checking whether a graph G satisfies an MSO property is FPT parameterized by the treewidth of G plus the length of the MSO expression. [Courcelle, '90]
- Arnborg et al.'s generalization: Several generalizations. For example, FPT algorithm for parameter $\operatorname{tw}(G) + |\phi(X)|$ that takes as input a graph G and an MSO sentence $\phi(X)$ where X is a free (non-quantified) vertex set variable, that computes a minimum-sized set of vertices X such that F(X) is true in G. Also, the input vertices and edges may be colored and their color can be tested. [Arnborg, Lagergren, Seese, '91]

Elements of MSO

An MSO formula has

- variables representing vertices (u, v, ...), edges (a, b, ...), vertex subsets (X, Y, ...), or edge subsets (A, B, ...) in the graph
- atomic operations
 - $u \in X$: testing set membership
 - X = Y: testing equality of objects
 - inc(u, a): incidence test "is vertex u an endpoint of the edge a?"
- propositional logic on subformulas: $\phi_1 \wedge \phi_2$, $\phi_1 \vee \phi_2$, $\neg \phi_1$, $\phi_1 \Rightarrow \phi_2$
- Quantifiers: $\forall X \subseteq V$, $\exists A \subseteq E$, $\forall u \in V$, $\exists a \in E$, etc.

Shortcuts in MSO

We can define some shortcuts

- $u \neq v$ is $\neg(u = v)$
- $X \subseteq Y$ is $\forall v \in V \ (v \in X) \Rightarrow (v \in Y)$
- $\bullet \ \forall v \in X \ \varphi \ \text{is} \ \forall v \in V (v \in X) \Rightarrow \varphi$
- $\exists v \in X \ \varphi \text{ is } \exists v \in V (v \in X) \land \varphi$
- $\bullet \ adj(u,v) \text{ is } (u\neq v) \land \exists a \in E \ (inc(u,a) \land inc(v,a)) \\$

Example: 3-Coloring,

- "there are three independent sets in G = (V, E) which form a partition of V"
- $3COL := \exists R \subseteq V \exists G \subseteq V \exists B \subseteq V$ $partition(\mathbf{R}, G, B) \wedge independent(\mathbf{R}) \wedge independent(G) \wedge independent(B)$ where $partition(R, G, B) := \forall v \in V \ ((v \in R \land v \notin G \land v \notin B) \lor (v \notin R \land v \in R))$ $G \land v \notin B) \lor (v \notin R \land v \notin G \land v \in B)$ and

 $independent(X) := \neg(\exists u \in X \ \exists v \in X \ adj(u,v))$

MSO Logic Example II

By Courcelle's theorem and our 3COL MSO formula, we have:

Theorem 1

3-COLORING is FPT with parameter treewidth.

Exercise

A domatic k-partition of a graph G=(V,E) is a partition (D_1,\ldots,D_k) of V into k dominating sets of G.

```
(sol+tw)-DOMATIC PARTITION
```

Input: graph G, integer k

Parameter: $k + \mathsf{tw}(G)$

Question: Does G have a domatic k-partition.

 \bullet Show that (sol+tw)-Domatic Partition is FPT using Courcelle's theorem

S. Gaspers (UNSW) Treewidth Semester 2, 2015

$$\exists D_1 \subseteq V \ \exists D_2 \subseteq V \ \dots \ \exists D_k \subseteq V$$
$$partition(D_1, D_2, \dots, D_k) \land$$
$$\forall v \in V \ dom(v, D_1) \land \dots \land dom(v, D_k)$$

with

$$dom(v,X) := v \in X \lor \exists x \in X \ adj(v,w)$$

Treewidth only for graph problems?

Let us use treewidth to solve a Logic Problem

- associate a graph with the instance
- take the tree decomposition of the graph
- most widely used: primal graphs, incidence graphs, and dual graphs of formulas.

Three Treewidth Parameters

CNF Formula
$$F = C \wedge D \wedge E \wedge F \wedge G$$
 where $C = (u \vee v \vee \neg y)$, $D = (\neg u \vee z \vee y)$, $E = (\neg v \vee w)$, $F = (\neg w \vee x)$, $G = (x \vee y \vee \neg z)$.

primal graph

dual graph

incidence graph

This gives rise to parameters primal treewidth, dual treewidth, and incidence treewidth.

Formally

Definition 2

Let F be a CNF formula with variables var(F) and clauses cla(F).

The primal graph of F is the graph with vertex set var(F) where two variables are adjacent if they appear together in a clause of F.

The dual graph of F is the graph with vertex set $\operatorname{cla}(F)$ where two clauses are adjacent if they have a variable in common.

The incidence graph of F is the bipartite graph with vertex set $var(F) \cup cla(F)$ where a variable and a clause are adjacent if the variable appears in the clause. The primal treewidth, dual treewidth, and incidence treewidth of F is the treewidth of the primal graph, the dual graph, and the incidence graph of F.

treewidth of the primal graph, the dual graph, and the incidence graph of $\emph{\emph{F}}$, respectively.

Incidence treewidth is most general

Lemma 3

The incidence treewidth of F is at most the primal treewidth of F plus 1.

Proof.

Start from a tree decomposition (T,γ) of the primal graph with minimum width. For each clause C:

- There is a node t of T with $\text{var}(C) \subseteq \gamma(t)$, since var(C) is a clique in the primal graph.
- Add to t a new neighbor t' with $\gamma(t') = \gamma(t) \cup \{C\}$.

Incidence treewidth is most general II

Lemma 4

The incidence treewidth of F is at most the dual treewidth of F plus 1.

Proof.

Exercise.

Incidence treewidth is most general II

Lemma 4

The incidence treewidth of F is at most the dual treewidth of F plus 1.

Proof.

Exercise.

Primal and dual treewidth are incomparable.

- One big clause alone gives large primal treewidth.
- $\{\{x,y_1\},\{x,y_2\},\ldots,\{x,y_n\}\}$ gives large dual treewidth.

SAT parameterized by treewidth

 Sat

Input: A CNF formula F

Question: Is there an assignment of truth values to var(F) such that F eval-

uates to true?

Note: If SAT is FPT parameterized by incidence treewidth, then SAT is FPT parameterized by primal treewidth and by dual treewidth.

SAT is FPT for parameter incidence treewidth

CNF Formula
$$F=C \land D \land E \land F \land G$$
 where $C=(u \lor v \lor \neg y)$,
$$D=(\neg u \lor z \lor y), \ E=(\neg v \lor w), \ F=(\neg w \lor x), \ G=(x \lor y \lor \neg z)$$

$$\neg u-u \quad \neg v-v \quad \neg w-w \quad \neg x-x \quad \neg y-y \quad \neg z-z$$
 Auxiliary graph:

- MSO Formula: "There exists an independent set of literal vertices that dominates all the clause vertices."
- The treewidth of the auxiliary graph is at most twice the treewidth of the incidence graph plus one.

FPT via MSO

Theorem 5

SAT is FPT for each of the following parameters: primal treewidth, dual treewidth, and incidence treewidth.

Outline

- Algorithms for trees
- 2 Tree decompositions
- Monadic Second Order Logic
- 4 Dynamic Programming over Tree Decompositions
 - Sat
 - CSP
- 5 Further Reading

Coucelle's theorem: discussion

Advantages of Courcelle's theorem:

- general, applies to many problems
- easy to obtain FPT results

Drawback of Courcelle's theorem

• the resulting running time depends non-elementarily on the treewidth t and the length ℓ of the MSO-sentence, i.e., a tower of 2's whose height is $\omega(1)$

$$2^{2^{2} \cdot \cdot \cdot \cdot^{t+\ell}}$$

S. Gaspers (UNSW) Treewidth Semester 2, 2015 33 / 52

Dynamic progamming over tree decompositions

Idea: extend the algorithmic methods that work for trees to tree decompositions.

- Step 1 Compute a minumum width tree decomposition using Bodlaender's algorithm
- Step 2 Transform it into a standard form making computations easier
- Step 3 Bottom-up Dynamic Programming (from the leaves of the tree decomposition to the root)

Nice tree decomposition

A *nice* tree decomposition (T, γ) has 4 kinds of bags:

- leaf node: leaf t in T and $|\gamma(t)| = 1$
- introduce node: node t with one child t' in T and $\gamma(t) = \gamma(t') \cup \{x\}$
- forget node: node t with one child t' in T and $\gamma(t) = \gamma(t') \setminus \{x\}$
- join node: node t with two children t_1, t_2 in T and $\gamma(t) = \gamma(t_1) = \gamma(t_2)$

Every tree decomposition of width w of a graph G on n vertices can be transformed into a nice tree decomposition of width w and $O(w \cdot n)$ nodes in polynomial time [Kloks '94].

Outline

- Algorithms for trees
- 2 Tree decompositions
- Monadic Second Order Logic
- 4 Dynamic Programming over Tree Decompositions
 - Sat
 - CSP
- 5 Further Reading

Dynamic programming: primal treewidth

- \bullet Compute a nice tree decomposition (T,γ) of F 's primal graph with minimum width [Bodlaender '96; Kloks '94]
- ullet Select an arbitary root r of T
- ullet Denote T_t the subtree of T rooted at t
- Denote $\gamma_{\downarrow}(t) = \{x \in \gamma(t') : t' \in V(T_t)\}$
- Denote $F_{\downarrow}(t) = \{C \in F : \text{var}(C) \subseteq \gamma_{\downarrow}(t)\}$
- For a node t and an assignment $\tau: \gamma(t) \to \{0,1\}$, define

$$sat(t,\tau) = \begin{cases} 1 & \text{if } \tau \text{ can be extended to a} \\ & \text{satisfying assignment of } F_{\downarrow}(t) \\ 0 & \text{otherwise}. \end{cases}$$

$$sat(t,\tau) = \begin{cases} 1 & \text{if } \tau \text{ can be extended to a} \\ & \text{satisfying assignment of } F_{\downarrow}(t) \\ 0 & \text{otherwise.} \end{cases}$$

Denote $x^1 = x$ and $x^0 = \neg x$.

We will view F as a set of clauses and each clause as a set of literals; e.g.

$$F = \{\{x, \neg y\}, \{\neg x, y, z\}\} \text{ instead of } F = (x \vee \neg y) \wedge (\neg x \vee y \vee z)$$

leaf node:

$$sat(t,\tau) = \begin{cases} 1 & \text{if } \tau \text{ can be extended to a} \\ & \text{satisfying assignment of } F_{\downarrow}(t) \\ 0 & \text{otherwise}. \end{cases}$$

Denote $x^1 = x$ and $x^0 = \neg x$.

We will view F as a set of clauses and each clause as a set of literals; e.g. $F = \{\{x, \neg y\}, \{\neg x, y, z\}\}\$ instead of $F = (x \lor \neg y) \land (\neg x \lor y \lor z)$

- leaf node: $sat(t,\{x=a\}) = \begin{cases} 1 & \text{if } \{x^{1-a}\} \notin F \\ 0 & \text{otherwise} \end{cases}$
- introduce node:

$$sat(t,\tau) = \begin{cases} 1 & \text{if } \tau \text{ can be extended to a} \\ & \text{satisfying assignment of } F_{\downarrow}(t) \\ 0 & \text{otherwise}. \end{cases}$$

Denote $x^1 = x$ and $x^0 = \neg x$.

We will view F as a set of clauses and each clause as a set of literals; e.g. $F = \{\{x, \neg y\}, \{\neg x, y, z\}\}\$ instead of $F = (x \lor \neg y) \land (\neg x \lor y \lor z)$

- leaf node: $sat(t, \{x=a\}) = \begin{cases} 1 & \text{if } \{x^{1-a}\} \notin F \\ 0 & \text{otherwise} \end{cases}$
 - introduce node: $\gamma(t) = \gamma(t') \cup \{x\}.$

$$sat(t, \{x = a\} \cup \{x_i = a_i\}_i) = sat(t', \{x_i = a_i\}_i)$$
$$\land \nexists C \in F : C \subseteq \{x^{1-a}\} \cup \{x_i^{1-a_i}\}_i.$$

• forget node:

• forget node: $\gamma(t) = \gamma(t') \setminus \{x\}$.

$$sat(t, \{x_i = a_i\}_i) = sat(t', \{x = 0\} \cup \{x_i = a_i\}_i)$$

 $\vee sat(t', \{x = 1\} \cup \{x_i = a_i\}_i).$

• join node:

• forget node: $\gamma(t) = \gamma(t') \setminus \{x\}$.

$$sat(t, \{x_i = a_i\}_i) = sat(t', \{x = 0\} \cup \{x_i = a_i\}_i)$$

 $\vee sat(t', \{x = 1\} \cup \{x_i = a_i\}_i).$

• join node:

$$sat(t, \{x_i = a_i\}_i) = sat(t', \{x_i = a_i\}_i)$$

 $\land sat(t', \{x_i = a_i\}_i).$

• forget node: $\gamma(t) = \gamma(t') \setminus \{x\}$.

$$sat(t, \{x_i = a_i\}_i) = sat(t', \{x = 0\} \cup \{x_i = a_i\}_i)$$
$$\vee sat(t', \{x = 1\} \cup \{x_i = a_i\}_i).$$

join node:

$$sat(t, \{x_i = a_i\}_i) = sat(t', \{x_i = a_i\}_i)$$

 $\land sat(t', \{x_i = a_i\}_i).$

- ullet Finally: F is satisfiable iff $\exists \tau: \gamma(r) \to \{0,1\}$ such that $sat(r,\tau)=1$
- ullet Running time: $O^*(2^k)$, where k is the primal treewidth of F, supposed we are given a minimum width tree decomposition
- Also extends to computing the number of satisfying assignments

Direct Algorithms

Known treewidth based algorithms for SAT:

$$k=$$
 primal tw $\qquad k=$ dual tw $\qquad k=$ incidence tw $O^*(2^k) \qquad \qquad O^*(4^k)$

- It is still worth considering primal treewidth and dual treewidth.
- These algorithms all count the number of satisfying assignments.

S. Gaspers (UNSW) Treewidth

Outline

- Algorithms for trees
- 2 Tree decompositions
- Monadic Second Order Logic
- 4 Dynamic Programming over Tree Decompositions
 - Sat
 - CSP
- 5 Further Reading

CSP

Input: A set of variables X, a domain D, and a set of constraints C

Question: Is there an assignment au:X o D satisfying all the constraints in

C?

A constraint has a scope $S=(s_1,\ldots,s_r)$ with $s_i\in X, i\in\{1,\ldots,r\}$, and a constraint relation R consisting of r-tuples of values in D.

An assignment $\tau: X \to D$ satisfies a constraint c = (S,R) if there exists a tuple (d_1,\ldots,d_r) in R such that $\tau(s_i)=d_i$ for each $i\in\{1,\ldots,r\}$.

Bounded Treewidth for Constraint Satisfaction

ullet Primal, dual, and incidence graphs are defined similarly as for $\mathrm{SAT}.$

Theorem 6 ([Gottlob, Scarcello, Sideri '02])

CSP is FPT for parameter primal treewidth if |D| = O(1).

- What if domains are unbounded?
- What if we consider incidence treewidth?

Unbounded domains

Theorem 7

CSP is W[1]-hard for parameter primal treewidth.

Unbounded domains

Theorem 7

CSP is W[1]-hard for parameter primal treewidth.

Proof Sketch.

Parameterized reduction from CLIQUE.

Let (G = (V, E), k) be an instance of CLIQUE.

Take k variables x_1, \ldots, x_k , each with domain V.

Add $\binom{k}{2}$ binary constraints $E_{i,j}$, $1 \le i < j \le k$.

A constraint $E_{i,j}$ has scope (x_i, x_j) and its constraint relation contains the tuple (u, v) if $uv \in E$.

The primal treewidth of this CSP instance is at most k-1.

Incidence treewidth

Theorem 8

CSP is W[1]-hard for parameter incidence treewidth and Boolean domain $(D = \{0, 1\})$.

Proof.

Exercise: reduction from CLIQUE.

Hints: (1) Use Boolean variables x_{ij} with $1 \le i \le k$ and $1 \le j \le n$ with the meaning that x_{ij} is set to 1 if the ith vertex of the clique corresponds to the jth vertex in the graph.

- (2) Add $O(k^2)$ constraints enforcing that for each $i \in \{1, \ldots, k\}$, exactly one x_{ij} is set to 1, and whenever two $x_{ij}, x_{i'j'}$ with $i \neq i'$ are set to 1, then vertices j and j' are adjacent in the graph.
- (3) Show that a graph with a vertex cover of size q has treewidth at most q.

Exercise

tw-Independent Set

Input: Graph G, integer k, and a tree decomposition of G of width t

Parameter: t

Question: Does G have an independent set of size k?

ullet Design an $O^*(2^t)$ time DP algorithm for tw-INDEPENDENT SET.

Hint: Proceed as for the presented SAT algorithm, storing the largest size of an independent set extending every in/out labeling of the vertices in a bag to all the vertices contained in bags in the current subtree of the tree decomposition.

- Obtain a nice tree decomposition (T, γ) of width t in polynomial time.
- ullet Denote T_i the subtree of T rooted at node i
- Denote $\gamma_{\downarrow}(i) = \{v \in \gamma(j) : j \in V(T_i)\}$
- Denote $G_{\downarrow}(i) = G[\gamma_{\downarrow}(i)]$
- For each node i of T, and each $S \subseteq \gamma(i)$, compute ind(i,S), the size of a largest independent set of $G_{\downarrow}(i)$ that contains all vertices of S and no vertex from $\gamma(i) \setminus S$ by dynamic programming.

Solution sketch II

• For a leaf node i with $\gamma(i) = \{v\}$:

$$ind(i, \emptyset) = 0$$

 $ind(i, \{v\}) = 1$

• For a forget node i with child i' and $\gamma(i) = \gamma(i') \setminus \{v\}$:

$$ind(i,S) = \max(ind(i',S), ind(i',S \cup \{v\}))$$

• For an introduce node i with child i' and $\gamma(i) = \gamma(i') \cup \{v\}$:

$$ind(i,S) = \begin{cases} -\infty & \text{if } G[S] \text{ contains an edge} \\ ind(i',S\setminus \{v\}) + [1 \text{ if } v\in S] & \text{otherwise} \end{cases}$$

• For a join node i with children i' and i'':

$$ind(i,S) = ind(i^{\prime},S) + ind(i^{\prime\prime},S) - |S|$$

Exercise

tw-Dominating Set

Input: Graph G, integer k, and a tree decomposition of G of width at

most t

Parameter: t

Question: Does G have a dominating set of size k?

• Design an $O^*(9^t)$ time DP algorithm for tw-DOMINATING SET. Can you even achieve an $O^*(4^t)$ time DP algorithm?

Hint: Use labeling (in dominating set) / (not in dominating set and needs to be dominated) / (not in dominating set but does not need to be dominated).

- Obtain a nice tree decomposition (T, γ) of width t in polynomial time.
- ullet Denote T_i the subtree of T rooted at node i
- Denote $\gamma_{\downarrow}(i) = \{v \in \gamma(j) : j \in V(T_i)\}$
- Denote $G_{\downarrow}(i) = G[\gamma_{\downarrow}(i)]$
- For each node i of T, and each labelling $\ell:\gamma(i)\to \{in,outDom,outNd\}$, compute the smallest size of a subset D of $\gamma_{\downarrow}(i)$ such that $D\cap\gamma(i)$ is the set of vertices labelled in by ℓ , and that dominates all vertices from $\gamma_{\downarrow}(i)$ except those that are labeled outNd by ℓ by dynamic programming.

The running time depends on how join nodes are handled.

See Section 10.5 in [Niedermeier, '06] for details.

Outline

- Algorithms for trees
- 2 Tree decompositions
- Monadic Second Order Logic
- 4 Dynamic Programming over Tree Decompositions
 - Sat
 - CSP
- Further Reading

Further Reading

- Chapter 7, Treewidth in Marek Cygan, Fedor V. Fomin, Łukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin Pilipczuk, Michał Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
- Chapter 5, Treewidth in Fedor V. Fomin and Dieter Kratsch. Exact Exponential Algorithms. Springer, 2010.
- Chapter 10, Tree Decompositions of Graphs in Rolf Niedermeier. Invitation to Fixed Parameter Algorithms. Oxford University Press, 2006.
- Chapter 10, Treewidth and Dynamic Programming in Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity. Springer, 2013.
- Chapter 13, Courcelle's Theorem in Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity. Springer, 2013.