1 Finding particular sequences of prime numbers

Write a program that finds all sequences of 6 consecutive prime 5-digit numbers, so of the form (a, b, c, d, e, f) with $b = a + 2$, $c = b + 4$, $d = c + 6$, $e = d + 8$, and $f = e + 10$. So a, b, c, d and e are all 5-digit prime numbers and no number between a and b, between b and c, between c and d, between d and e, and between e and f is prime.

The expected output is:

The solutions are:

- 13901, 13903, 13907, 13913, 13921, 13931
- 21557, 21559, 21563, 21569, 21577, 21587
- 28277, 28279, 28283, 28289, 28297, 28307
- 55661, 55663, 55667, 55673, 55681, 55691
- 68897, 68899, 68903, 68909, 68917, 68927

2 Decoding a multiplication

Write a program that decodes all multiplications of the form

\[
\begin{array}{cccc}
\ast & \ast & \ast \\
x & \ast & \ast \\
\hline \\
\ast & \ast & \ast \\
\ast & \ast & \ast \\
\hline \\
\ast & \ast & \ast & \ast \\
\end{array}
\]

such that the sum of all digits in all 4 columns is constant.

The expected output is:

- $411 \times 13 = 5343$, all columns adding up to 10.
- $425 \times 23 = 9775$, all columns adding up to 18.
3 Finding particular sequences of triples

Write a program that finds all triples of positive integers \((i, j, k)\) such that \(i, j\) and \(k\) are two digit numbers, no digit occurs more than once in \(i, j\) and \(k\), and the set of digits that occur in \(i, j\) or \(k\) is equal to the set of digits that occur in the product of \(i, j\) and \(k\).

The expected output is:

\[
\begin{align*}
20 \times 79 \times 81 &= 127980 \\
21 \times 76 \times 80 &= 127680 \\
28 \times 71 \times 90 &= 178920 \\
31 \times 60 \times 74 &= 137640 \\
40 \times 72 \times 86 &= 247680 \\
46 \times 72 \times 89 &= 294768 \\
49 \times 50 \times 81 &= 198450 \\
56 \times 87 \times 94 &= 457968
\end{align*}
\]

Consider writing two versions: one that uses the `builtin` set operator, and one that uses bitwise operators. So for instance, with respect to the solution \(20 \times 79 \times 81 = 127980\),

- one version would build the sets \(\{0, 2\}, \{0, 2, 7, 9\}, \{0, 1, 2, 7, 8, 9\}\), verify that they are of respective sizes 2, 4 and 6, and verify that the latter is equal to the set of digits occurring in the product, 127980;

- another version would build the integers \(2^0 + 2^2, 2^0 + 2^2 + 2^7 + 2^9, 2^0 + 2^1 + 2^2 + 2^7 + 2^8 + 2^9\), verify that the number of bits set to 1 in these integers is equal to 2, 4 and 6, respectively, and verify that the set of bits set to 1 in the third of these three integers is equal to the set of bits set to 1 in the product, 127980.
4 Decoding a sequence of operations

Write a program that finds all possible ways of inserting + and - signs in the sequence 123456789 (at most one sign before any digit) such that the resulting arithmetic expression evaluates to 100.

Here are a few hints.

- 1 can either be preceded by -, or optionally be preceded by +; so 1 starts a negative or a positive number.
- All other digits can be preceded by - and start a new number to be subtracted to the running sum, or be preceded by + and start a new number to be added to the running sum, or not be preceded by any sign and be part of a number which it is not the leftmost digit of. That gives 3^8 possibilities for all digits from 2 to 9. We can generate a number N in [0, 3^8 − 1]. Then we can:
 - consider the remainder division of N by 3 to decide which of the three possibilities applies to 2;
 - consider the remainder division of \(\frac{N}{3} \) by 3 to decide which of the three possibilities applies to 3;
 - consider the remainder division of \(\frac{N}{3^2} \) by 3 to decide which of the three possibilities applies to 4;
 - ...

The expected output is (the ordering could be different):

1 + 23 - 4 + 5 + 6 + 78 - 9 = 100
123 - 4 - 5 - 6 - 7 + 8 - 9 = 100
123 + 45 - 67 + 8 - 9 = 100
123 + 4 - 5 + 67 - 89 = 100
12 + 3 + 4 + 5 - 6 - 7 + 89 = 100
123 - 45 - 67 + 89 = 100
12 - 3 - 4 + 5 - 6 + 7 + 89 = 100
1 + 2 + 34 - 5 + 67 - 8 + 9 = 100
1 + 2 + 3 - 4 + 5 + 6 + 78 + 9 = 100
-1 + 2 - 3 + 4 + 5 + 6 + 78 + 9 = 100
12 + 3 - 4 + 5 + 67 + 8 + 9 = 100
1 + 23 - 4 + 56 + 7 + 8 + 9 = 100

Consider writing two versions: one that generates and evaluates the expression on the left hand side of the equality “by hand”, and one that generates and evaluates the expression on the left hand side of the equality using the builtin eval() function.