
COMP1511 - Programming
Fundamentals
Term 1, 2020 - Lecture 1

What are we talking about today?
First Hour

● Introductions
● Welcome to UNSW and Programming
● How COMP1511 works

○ How we will be teaching you
○ What we expect from you

● How to get help and the best ways to approach learning Programming

Second Hour

● What are these amazing machines we call computers?
● A first look at C
● Working in Linux

Who’s Teaching you?

● Course Convener/Lecturer Marc Chee
○ B Stream Lecturer Andrew Taylor
○ cs1511@cse.unsw.edu.au

● Tutors
○ Too many to mention in person!
○ You will meet (or already have met) your tutor this week

in class
● Course webpage

https://webcms3.cse.unsw.edu.au/COMP1511/20T1/
● Course Forum (you should have received an email

invite to this)

mailto:cs1511@cse.unsw.edu.au
https://webcms3.cse.unsw.edu.au/COMP1511/20T1

Welcome to UNSW and Programming

What is studying at University like?

● You are now in control of your own
education

What is programming?

● Talking to computers . . . in a language that
we can both understand

● Learning to solve problems
● We give the computer a procedure, not an

answer

How is this course going to run?
We will teach you how to code, with no assumptions of prior knowledge

● How to think when programming
● The C programming language
● How to solve problems with code

Course Format

● Lectures
● Live Streams
● Tutorials
● Lab Classes
● Weekly Tests and Assignments
● Help Sessions

Term Schedule and Flexibility Week
UNSW's 10 Week Term

● The subject runs from week 1 to 10
● Week 6 is the flexibility week

Flexibility Week

● Optional and Guest Lectures
● No official class content
● Help Sessions will be running for Assignment support

Lectures
Two hour sessions

● Stream A in Central Lecture Block 7
● Stream B in Physics Theatre and Ainsworth G03
● Tuesday 9-11am
● Wednesday 11am-1pm

If you have a question, feel free to ask on Slido or raise your hand

There’s only one rule: No one disrupts anyone else’s education

Lecture Content
● Theory - What are we trying to understand?
● Demonstrations - Some live coding to show you how some things work
● Problem Solving - How do we decide what to code?
● Other stuff - Outside of programming, what's important?

Lecture slides (and other materials) are available from the Course Website:
(https://webcms3.cse.unsw.edu.au/COMP1511/20T1/)

Lecture recordings will be linked on the Course Website (via Moodle)

https://webcms3.cse.unsw.edu.au/COMP1511/20T1/

Tutorials
A one hour classroom environment

● Go further in depth into the topics we’re teaching
● Actual practical working of tasks and problems we’ve given you
● Learning how to solve problems before you write the code!

Tutorial Questions will be available in advance of the tutorials

Tutorials are a good place for interactive learning. You’ll have time to discuss
and work through problems there

Lab Classes
Two hour laboratory sessions that follow immediately from tutorials

● Actual coding on CSE computers
● Practical coding including working in pairs

○ Pairs will be assigned by your tutor
● Lab exercises will be marked automatically and count towards your final

marks (10%)
● There are challenge exercises for earning bonus marks (not necessary

and some are hard enough that they’ll eat up a lot of time)

Weekly Programming Tests
Self-run practice for exam situations

● 1 hour tests under self-run exam conditions with automated marking
● Running from weeks 3-5 and 7-10
● These are ways for you to gauge your current progress
● Tests count towards your final mark (5%)

No Spoilers

● We're not going to discuss Weekly Tests publicly until after they're due
● No spoiling the surprise on the forums until everyone's seen them

Assignments
Larger scale projects

● Individual work
● These will take you a few weeks and will test how well you can apply the

theory you’ve learnt
● There are two Assignments due in Weeks 6 and 10

○ Late penalties of 1/100 per hour apply (this reduces your maximum possible mark)

● Assignment 1 is worth 15% of your final mark
● Assignment 2 is worth 20% of your final mark

Help Sessions
Optional Sessions scheduled during the week

● Some one on one consultation with tutors
● Held in some of the same labs you have your tutorials in
● Time for you to ask individual questions or get help with specific problems
● Schedule will be up on the Course Website soon

Live Streaming
Optional Extra Content

● Live streaming sessions using Youtube live
● Marc will do some live coding
● He will also answer your questions live
● Primarily, these are to give you information about the Assignments
● These will be scheduled at Assignment release dates (mostly)

Exam
Practical Programming held in our labs during the exam period

● You’ll be expected to be able to program using the CSE environment
● Some online documentation will be available
● You’ll be given a series of problems to solve in C
● You will also be expected to read some C and show you understand it

Exam Hurdles

● Parts of the exam are competency hurdles
● These questions must be answered correctly to pass the course

Total Assessment
● 10% Labs
● 5% Weekly Tests
● 15% Assignment 1
● 20% Assignment 2
● 50% Exam

To pass the course you must:

● Score at least 50/100 overall
● Solve problems using arrays in the final exam
● Solve problems using linked lists in the final exam

Special Consideration & Supplementary Assessment
Special Consideration

● Support for any issues that make it difficult for you to study
● https://student.unsw.edu.au/special-consideration
● You can apply now if you have existing reasons (or later if something

comes up)

A Supplementary exam can be offered to students granted Special
Consideration for the exam

● Identical in format to the main exam
● Will be held in May (25-29th May, exact date to be confirmed)

https://student.unsw.edu.au/special-consideration

Course Textbook
This is an optional book if you wish to use one

● Programming, Problem Solving, and Abstraction with C
Alistair Moffat, Pearson Educational, Australia, 2012,
ISBN 1486010970

Code of Conduct
This course and this University allows all students to learn, regardless of
background or situation

Remember the one rule . . . you will not hinder anyone else’s learning!

Anything connected to COMP1511, including social media, will follow
respectful behaviour

● No discrimination of any kind
● No inappropriate behaviour

○ No harassment, bullying, aggression or sexual harassment
● Full respect for the privacy of others

Plagiarism
Plagiarism is the presentation of someone else’s work or ideas as if they were
your own.

Any kind of cheating on your work for this course will incur penalties (see the
course outline for details)

Collaboration on individual assessments like Assignments and Weekly Tests is
considered plagiarism

And really . . . if you don’t spend the time to learn the content, the only person who
loses is you

Collaboration vs Plagiarism
● Discussion of work and algorithms is fine (and encouraged)
● The internet has a lot of resources you should learn to use, just make sure

you credit your sources
● No collaboration on individual assignments
● Your submissions are entirely your own work

○ Don’t use other people’s code
○ Don’t ask someone else to solve problems for you (even verbally)
○ Don’t provide your code to other people

● At best, you’ll lose the marks for the particular assignment
● At worst, you’ll be asked to leave UNSW
● And even worse . . . you won’t learn what you paid all this money and time

to learn

Break Time!
Let’s take five minutes in between lecture sections

● There's a fun little app called Lightbot (http://lightbot.com/flash.html)
● Also available on iOS and Android

http://lightbot.com/flash.html

How to succeed in COMP1511 (and life)
A simple idea:

The more time you spend practising something, the better you get at it

We’ve set up the course to ease your learning . . .

If you just follow what we’re teaching, that will be a good start

● Complete all tutorial and lab work
● Complete all assignment work

Try not to focus on how good you are (or are not), but the real focus is on
whether you’re improving or not

Unlearn what you have learnt

If you want more info . . .
● Reading

○ Course webpage
○ Course forum

● Recorded Lectures
● In Person

○ Help Sessions
○ Come and see me after the lecture!
○ Ask your tutor during tutorials

● Serious Issues
○ Email cs1511@unsw.edu.au
○ The Nucleus (student hub: nucleus.unsw.edu.au)
○ CSE Help Desk (http://www.cse.unsw.edu.au/~helpdesk/)

Speaking of Email
Make sure you have your UNSW email address set up

If you need to contact the course, please contact your tutor first

You may already have received an email from them!

Otherwise, use cs1511@cse.unsw.edu.au

Use your UNSW email address and make sure you include your zID so we
know who we’re helping

mailto:cs1511@cse.unsw.edu.au

What is a Computer?
A tool . . . a machine . . .

The ultimate tool in its ability to be reconfigured for different purposes.

The key elements:

● A processor to execute commands
● Memory to store information

History of Computers

Humans have been using calculation and
data storage tools for millennia

The first concepts of a programmable
computer were from around 1835

● Charles Babbage designed the first
“Analytical Engine”

● Ada Lovelace was the first person to
write a computer program

Computers this Century

In 1944, the computer Colossus is made in
the UK to break German codes

Alan Turing was instrumental in the Allied
effort in World War 2

He also developed the concept of the
Turing Machine, which is the basis of all
our modern computers

Modern Computing

We now have much more processing capability than in the past

So what can we do with it?

● Realtime solutions to very difficult problems
● Global simulations for climate and weather patterns
● Connecting individuals globally in communication networks
● Simulating highly complex virtual environments
● Deciding what you want to watch next on Netflix . . .

And maybe you will come up with something new to do with them in the
future . . .

Using CSE’s Computing Resources
Our labs are running Linux with the basic tools necessary to get started

You might also want to get your own computer ready to code with

Some options:

● VLAB allows you to remotely use CSE’s resources
● You can set up a programming environment on your own computer

(check the course website for links to guides)

For COMP1511 we need:

● A text editor like gedit
● A compiler (we use dcc)

Working in Linux

The first thing is to get setup with a
simple programming environment

Here at CSE we use the Linux
Operating System

An Operating System sits between
our code and the computer,
providing essential services

Computer Hardware

Operating System

Your Code

Using a Terminal
The main interface to Linux is a terminal

This means all our interaction is in text

Some commands:

● ls
○ Lists all the files in the current directory

● mkdir directoryName
○ Makes a new directory called directoryName

● cd
○ Changes the current directory

● pwd
○ Tells you where you are in the directory structure at the moment

What the basics look like
gedit

● A basic text editor
● Helps out a little by highlighting C in different colours

dcc/gcc

● A compiler - A translator that takes our formal human readable C and
turns it into the actual machine readable program

● The result of the compiler is something we can “run”

You can use VLAB to access CSE’s editor and compiler

Programming in C
Programming is like talking to your computer

We need a shared language to be able to have this conversation

We’ll be looking at one particular language, C and learning how to write it

C is:

● A clear language with defined rules so that nothing we write in it is
ambiguous

● Many modern programming languages are based on C
● A good starting point for learning how to control a computer from its

roots

Let’s see some C
// Demo Program showing output

// Marc Chee, June 2019

#include <stdio.h>

int main (void) {

 printf("Hello World.\n");

 return 0;

}

Comments

Words for humans

● Half our code is for the machine, the other half is for humans! (roughly)
● We put “comments” in to describe to our future selves or our

colleagues what we intended for this code
● // in front of a line makes it a comment
● If we use /* and */ everything between them will be comments
● The compiler will ignore comments, so they don’t have to be proper

code

// Demo Program showing output

// Marc Chee, June 2019

#include

#include is a special tag for our compiler

It asks the compiler to grab another file of code and add it to ours

In this case, it’s the Standard Input Output Library, allowing us to make text
appear on the screen (as well as other things)

#include <stdio.h>

The "main" Function

A function is a block of code that is a set of instructions

Our computer will run this code line by line, executing our instructions

The first line tells us (things we'll cover in detail later):

● int is the output - this stands for integer, which is a whole number
● main is the name of the function
● (void) means that this function doesn’t take any input

int main (void) {

 printf("Hello World.\n");

 return 0;

}

The Body of the Function

Between the { and } are a set of program instructions

printf() is actually another function from stdio.h which we included. It
makes text appear on the screen

return is a C keyword that says we are now delivering the output of the
function. A main that returns 0 is signifying a correct outcome of the
program

int main (void) {

 printf("Hello World.\n");

 return 0;

}

Editing and Compilation
We can open a terminal now and try the code we’ve just looked at

In the linux terminal we will open the file to edit by typing:

gedit helloWorld.c &

Once we’re happy with the code we’ve written, we’ll compile it by typing:

dcc helloWorld.c -o helloWorld

The -o part tells our compiler to write out a file called "helloWorld" that we can
then run by typing:

./helloWorld

The ./ lets us run the program "helloWorld" that is in our current directory

One working Program!

That’s one program working!

What to do next?

● Try this yourself!
● Try it using a CSE lab computer
● Try it using VLAB via your own

computer
● Try setting up a programming

environment on your own computer
(differing levels of difficulty depending
on your operating system)

What did we learn today?
● COMP1511 and administration
● Where to find resources (course webpage and forum!)
● What your responsibilities are and how to succeed in programming

● A brief look at the history of computers
● An overview of how they work
● Your very first C program
● Using the basics of Linux

