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Inductive Reasoning

Suppose we would like to reach a conclusion of the form
P(x) for all x (of some type)

Inductive reasoning (as understood in philosophy) proceeds from
examples.
E.g. From “This swan is white, that swan is white, in fact every
swan I have seen so far is white”
Conclude: “Every Swan is white”

NB

This may be a good way to discover hypotheses.
But it is not a valid principle of reasoning!

Mathematical induction is a variant that is valid.
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Example

Fibonacci Numbers:

fib(1) = 1
fib(2) = 1
fib(n) = fib(n − 1) + fib(n − 2) for all n > 2

fib(1) 1
fib(2) 1
fib(3) 2
fib(4) 3

fib(5) 5
fib(6) 8
fib(7) 13
fib(8) 21

fib(9) 34
fib(10) 55
fib(11) 89
fib(12) 144
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Example

fib(1) = 1
fib(2) = 1
fib(n) = fib(n − 1) + fib(n − 2) for all n > 2

fib(1) 1
fib(2) 1
fib(3) 2
fib(4) 3

fib(5) 5
fib(6) 8
fib(7) 13
fib(8) 21

fib(9) 34
fib(10) 55
fib(11) 89
fib(12) 144

Claim: Every 4th Fibonacci number is divisible by 3
How can we prove this?
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Mathematical Induction

Mathematical Induction is based not just on a set of examples, but
also a rule for deriving new cases of P(x) from cases for which P is
known to hold.
General structure of reasoning by mathematical induction:

Base Case [B]: P(a1),P(a2), . . . ,P(an) for some small set of
examples a1 . . . an (often n = 1)
Inductive Step [I]: A general rule showing that if P(x) holds for
some cases x = x1, . . . , xk then P(y) holds for some new case y ,
constructed in some way from x1, . . . , xk .

Conclusion: Starting with a1 . . . an and repeatedly applying the
construction of y from existing values, we can eventually construct
all values in the domain of interest.
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Example

Suppose we start with x = 0 and repeatedly apply the construction
x 7→ x + 1.
Then we construct values
0, 0 + 1 = 1, 1 + 1 = 2, 2 + 1 = 3, 3 + 1 = 4, . . .
In the limit, this is all of N
The corresponding principle of Mathematical Induction on N:

Base Case [B]: P(0)
Inductive Step [I]: ∀k ≥ 0 (P(k)→ P(k + 1))

Conclusion: ∀n ∈ N P(n)
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Inductive Hypothesis

To prove the Inductive Step, P(k)→ P(k + 1) for k ≥ 0, we
typically proceed as follows:

Assume P(k), for an arbitrary k ≥ 0

... (steps of reasoning, often using the assumption that P(k))

Conclude P(k + 1).

Here P(k) is called the Inductive Hypothesis

11



Example
Theorem. For all n ∈ N, we have

P(n) :
n∑

i=0

i =
n(n + 1)

2

Proof.

[B] P(0), i.e.
0∑

i=0

i =
0(0 + 1)

2

[I] ∀k ≥ 0 (P(k)→ P(k + 1)), i.e.

k∑
i=0

i =
k(k + 1)

2
→

k+1∑
i=0

i =
(k + 1)(k + 2)

2

(proof?)
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Example (cont’d)

Proof.

Inductive step [I]:

k+1∑
i=0

i =

(
k∑

i=0

i

)
+ (k + 1)

=
k(k + 1)

2
+ (k + 1) (by the inductive hypothesis)

=
k(k + 1) + 2(k + 1)

2

=
(k + 1)(k + 2)

2
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Variations

1 Induction from m upwards

2 Induction steps >1

3 Strong induction

4 Backward induction

5 Forward-backward induction

6 Structural induction
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Induction From m Upwards

If
[B] P(m)
[I] ∀k ≥ m (P(k)→ P(k + 1))
then
[C] ∀n ≥ m (P(n))
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Example

Theorem. For all n ≥ 1, the number 8n − 2n is divisible by 6.

[B] 81 − 21 is divisible by 6
[I] if 8k − 2k is divisible by 6, then so is 8k+1 − 2k+1, for all k ≥ 1

Prove [I] using the “trick” to rewrite 8k+1 as 8 · (8k − 2k + 2k)
which allows you to apply the Ind. Hyp. on 8k − 2k
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Exercise

Consider an increasing function f : N −→ N
i.e., ∀m, n (m ≤ n → f (m) ≤ f (n))
and a function g : N −→ N such that

f (0) < g(0)

f (1) = g(1)

if f (k) ≥ g(k) then f (k + 1) ≥ g(k + 1), for all k ∈ N

Always true, false or could be either?
(a) f (n) > g(n) for all n ≥ 1 — false
(b) f (n) > g(n) for some n ≥ 1 — could be either
(c) f (n) ≥ g(n) for all n ≥ 1 — true
(d) g is decreasing (m ≤ n → g(m) ≥ g(n)) — could be either
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Induction Steps ` > 1

If
[B] P(m)
[I] P(k)→ P(k + `) for all k ≥ m
then
[C] P(n) for every `’th n ≥ m
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Example

fib(1) = 1
fib(2) = 1
fib(n) = fib(n − 1) + fib(n − 2)

Every 4th Fibonacci number is divisible by 3.

[B] fib(4) = 3 is divisible by 3
[I] if 3 | fib(k), then 3 | fib(k + 4), for all k ≥ 4

Prove [I] by rewriting fib(k + 4) in such a way
that you can apply the Ind. Hyp. on fib(k)
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Strong Induction

This is a version in which the inductive hypothesis is stronger.
Rather than using the fact that P(k) holds for a single value, we
use all values up to k.

If
[B] P(m)
[I] [P(m) ∧ P(m + 1) ∧ . . . ∧ P(k)]→ P(k + 1) for all k ≥ m
then
[C] P(n), for all n ≥ m
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Example

Claim: All integers ≥ 2 can be written as a product of primes.

[B] 2 is a product of primes
[I] If all x with 2 ≤ x ≤ k can be written as a product of primes,

then k + 1 can be written as a product of primes, for all k ≥ 2

Proof for [I]?
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Negative Integers, Backward Induction
NB

Induction can be conducted over any subset of Z with least
element. Thus m can be negative; eg. base case m = −106.

NB

One can apply induction in the ‘opposite’ direction
p(m)→ p(m − 1). It means considering the integers with the
opposite ordering where the next number after n is n − 1. Such
induction would be used to prove some p(n) for all n ≤ m.

NB

Sometimes one needs to reason about all integers Z. This requires
two separate simple induction proofs: one for N, another for −N.
They both would start form some initial values, which could be the
same, e.g. zero. Then the first proof would proceed through
positive integers; the second proof through negative integers.
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Forward-Backward Induction

Idea

To prove P(n) for all n ≥ k0

verify P(k0)

prove P(ki ) for infinitely many k0 < k1 < k2 < k3 < . . .

fill the gaps
P(k1)→ P(k1 − 1)→ P(k1 − 2)→ . . .→ P(k0 + 1)
P(k2)→ P(k2 − 1)→ P(k2 − 2)→ . . .→ P(k1 + 1)
. . . . . . . . .
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Example

Claim

Binary search in an (ordered) list of n − 1 elements requires no
more than dlog2 ne comparisons.

Proof.

(i) it holds for n = 1

(ii) if it holds for k then it holds for 2k,
thus true for 2, 4, 8, 16, . . .

(iii) if it holds for 2i then it holds for 2i − 1, 2i − 2, . . . , 2i−1 + 1,
thus true for all n.

27



Forward-Backward Induction: Formalisation

[B] P(k0)
[I] if P(k) then P(k ′) for some k ′ > k

[I] and [B] alone imply P(ki ) for infinitely many k0 < k1 < k2 < . . .

[D] P(k)→ P(k − 1) for all k between ki ’s and ki+1’s (downward step)
[C] ∀n ≥ k0 (P(n))

NB

This form of induction is extremely important for the analysis of
algorithms.
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Various Inductive Arguments

Induction by cases
Consider separately various subsets S1, S2, . . . ⊂ N, eg. odd and
even numbers, making sure that they jointly cover all of N.
Complete the proof (by induction) separately for each subset.

Example

Any amount n ∈ N greater than $1 can be paid using units
(‘coins’) of $2 and $3.
To prove it we conduct two inductive arguments: one over the
even numbers, the other over the odd numbers.
Equivalently, we can split the proof into three cases: one for the
numbers divisible by 3, one for those with remainder 1 and one for
those with remainder 2.
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NB

One can use the same type of argument for any two coin values
$m and $n if gcd(m, n) = 1 and amount > $(mn −m − n).
The proof splits into m cases: one for numbers divisible by m, then
one for those having remainder 1 mod m, then . . .
Each case uses a similar inductive argument: if an amount $p can
be paid using coins $m,$n, then so can be the amount $(p + m).
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Infinite Descent

To prove that Q(n), for all n ≥ m, show

¬Q(n)→ ¬Q(n′) for some n′ < n

there cannot be arbitrarily small n s.t. Q(n) is false;
in particular the “base case” Q(m) is true

This amounts to a proof by contradiction: to verify ∀n Q(n) we
assume (provisionally) its negation ∃n¬Q(n) and proceed to show
that there would have to exist a smaller n′ such that ¬Q(n′).
Usually the conditions of the problem make it clear that no such
infinite decreasing chain . . . < n′′ < n′ < n can possibly exist.
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Example

Theorem

For a planar, connected graph let F be the number of faces
(enclosures) including the exterior face, E the number of edges,
and V the number of vertices.
Euler’s formula holds:

V − E + F = 2 (EF)
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Proof.

Suppose G = (V ,E ) is a planar connected graph that
violates (EF).

First observe that G must have an edge because it is connected
and the graph with just one vertex satisfies (EF).

If G has an outside edge, that is, an edge separating the exterior
face from an interior face, then removing that edge results in a
smaller (planar, connected) graph, also violating (EF) because
both E and F are reduced by 1.

If G has no outside edge then it has a vertex v of degree 1.
Removing v reduces both V and E by 1 while F remains
unchanged. It follows that we again found a smaller (planar,
connected) graph violating (EF).
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Structural Induction

The induction schemes can be applied not only to natural numbers
(and integers) but to any partially ordered set in general.

The basic approach is always the same — we need to verify that

[I] for any given object, if the property in question holds for
all its predecessors (‘smaller’ objects) then it holds for the
object itself

[B] the property holds for all minimal objects — objects that
have no predecessors; they are usually very simple objects
allowing immediate verification
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Example: Induction on Rooted Trees

We write T = 〈r ; T1,T2, . . . ,Tk〉 for a tree T with root r and k
subtrees at the root T1, . . . ,Tk

If
[B] p(〈v ; 〉) for trees with only a root
[I] p(T1) ∧ . . . ∧ p(Tk)→ p(T ) for all trees

T = 〈r ; T1,T2, . . . ,Tk〉
then
[C] p(T ) for every tree T
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Example

Theorem

In any rooted tree the number of vertices is one more than the
number of edges.

Proof.

[B] If T = 〈v ; 〉 then v(T ) = 1 and e(T ) = 0
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Example

Theorem

In any rooted tree the number of vertices is one more than the
number of edges.

Proof.

[B] If T = 〈v ; 〉 then v(T ) = 1 and e(T ) = 0

[I] If T = 〈r ; T1,T2, . . . ,Tk〉 then

v(T ) = 1 +
∑k

i=1 v(Ti ) and e(T ) = k +
∑k

i=1 e(Ti )
From the Ind. Hyp. on T1, . . . ,Tk it follows that∑k

i=1 v(Ti ) =
∑k

i=1(e(Ti ) + 1) = (
∑k

i=1 e(Ti )) + k
Therefore

v(T ) = 1 + (
∑k

i=1 e(Ti )) + k = 1 + e(T )
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Example

Theorem

In any rooted tree the number of leaves is one more than the
number of vertices that have a right sibling.

Proof: exercise

4 leaves 3 vertices with right sibling
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Recursive Definitions

They comprise basis (B) and recursive process (R).
A sequence is recursively defined when (typically)
(B) some initial terms are specified, perhaps only the first one;
(R) later terms stated as functional expressions of the earlier terms.
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Examples

Factorial:
(B) 0! = 1
(R) (n + 1)! = (n + 1) · n!

Fibonacci numbers:
(B) fib(1) = 1
(B) fib(2) = 1
(R) fib(n) = fib(n − 1) + fib(n − 2)

NB

(R) also called recurrence formula
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Inductive Proofs About Recursive Definitions

Proofs about recursively defined function very often proceed by a
mathematical induction following the structure of the definition.

Example

∀n ∈ N
(
n! ≥ 2n−1

)
Proof.

[B] 0! = 1 ≥ 1
2 = 20−1

[I] Assume n ≥ 1.
(n + 1)! = n! · (n + 1) ≥ 2n−1 · (n + 1) by Ind. Hyp.

≥ 2n−1 · 2 by n ≥ 1
= 2n
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Exercise

4.4.2 Define s1 = 1 and sn+1 = 1
1+sn

for n ≥ 1

Then s1 = 1, s2 = 1
2 , s3 = 2

3 , s4 = 3
5 , s5 = 5

8 , . . .
The numbers in numerator and denominator remind one of the
Fibonacci sequence.
Prove by induction that

sn =
fib(n)

fib(n + 1)
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Example (continued)

Furthermore,

lim
n→∞

sn =
2√

5 + 1
=

√
5− 1

2
≈ 0.6

This is obtained by showing (using induction!) that

fib(n) =
1√
5

(rn1 − rn2 )

where r1 = 1+
√
5

2 and r2 = 1−
√
5

2
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Exercise

4.4.4 (a) Give a recursive definition for the sequence

(2, 4, 16, 256, . . .)

To generate an = 22
n

use an = (an−1)2.
(The related “Fermat numbers” Fn = 22n + 1 are used in cryptography.)

(b) Give a recursive definition for the sequence

(2, 4, 16, 65536, . . .)

To generate a “stack” of n 2’s use bn = 2bn−1 .
(These are Ackermann’s numbers, first used in logic. The inverse
function is extremely slow growing; it is important for the analysis
of several data organisation algorithms.)
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Correctness of Recursive Definition

A recurrence formula is correct if the computation of any later
term can be reduced to the initial values given in (B).

Example (Incorrect definition)

Function g(n) is defined recursively by

g(n) = g(g(n − 1)− 1) + 1, g(0) = 2.

The definition of g(n) is incomplete — the recursion may not
terminate:
Attempt to compute g(1) gives

g(1) = g(g(0)−1) + 1 = g(1) + 1 = . . . = g(1) + 1 + 1 + 1 . . .

When implemented, it leads to an overflow; most static
analyses cannot detect this kind of ill-defined recursion.
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Example (continued)

However, the definition could be repaired. For example, we can
add the specification specify g(1) = 2.

Then g(2) = g(2− 1) + 1 = 3,
g(3) = g(g(2)− 1) + 1 = g(3− 1) + 1 = 4,
. . .

In fact, by induction . . . g(n) = n + 1
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This illustrates a very important principle: the boundary (limiting)
cases of the definition are evaluated before applying the recursive
construction.

Example

Function f (n) is defined by

f (n) = f (dn/2e), f (0) = 1

When evaluated for n = 1 it leads to

f (1) = f (1) = f (1) = . . .

This one can also be repaired. For example, one could specify that
f (1) = 1.
This would lead to a constant function f (n) = 1 for all n ≥ 0.
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Mutual Recursion

Several more sophisticated programs employ a technique of two
procedures calling each other. Of course, it should be designed so
that each consecutive call refers to ever smaller parameters, so
that the entire process terminates. This method is often used in
computer graphics, in particular for generating fractal images
(basis of various imaginary landscapes, among others).
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Summary

Mathematical induction:
base case(s), inductive hypothesis P(k),
inductive step ∀k (P(k)→ P(k + 1)), conclusion

Variations:
strong ind., forward-backward ind., ind. by cases,
structural ind.

Recursive definitions
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