
Software vs Cognitive
Architectures

Robot Operating
System (ROS)

ROS
Node Topic

ROS
Node

ROS
NodeROS

Node
ROS
Node

Topic

Blackboards

• Agents communicate by posting objects to
blackboard

• Objects are timestamped and logged to a
database

• enables introspection and learning

• An agent subscribes to objects of specified types

• Agent is activated when object of the right type is
posted

BB

DB

IBB

BB

DB

IBB

BB

DB

IBB

speech recognition

“pick up the green ball”

<postal-address> ::= <name-part> <street-address>
<name-part> ::= <personal-part> <last-name> <opt-jr>
<personal-part> ::= <first-name> | <initial> "."
<street-address> ::= <opt-apt-num> <house-num> <street>
<zip-part> ::= <town-name> "," <state-code> <ZIP-code>
<opt-jr-part> ::= "Sr." | "Jr." | <roman-numeral> | ""

pickup(B)

move(..)

contact

colour recognition

depth analysis

audio input

motor actions

tactile sensors

planner

natural language processing

stereo 
camera

stop

• Most robot systems are ad hoc
combinations of components

• Supported by software architectures (e.g.
ROS)

• No principled way of combining
components

• No principled way of extending system or
components through learning

Robot software architectures

Three-Layer Architecture

A Decentralised Software Process Approach For Real time Navigation of Service Robots 293

decomposition of the system to distinguish the granularity of the modules responsibilities.
Service Robots must have highly competent reactive mechanisms to be safe, flexible and
easy to use. At the same time, planning and sequencing are useful to reduce the repetition
and taxation on the user for direction. (Kawamura, Pack et al. ����).
The uncertainties from the environment, the complexities of software/hardware
interactions, and the variability of the robotic hardware make the task of developing robotic
software complex, hard, and costly. Hence, it has become increasingly important to leverage
robotic developments across projects and platforms.(Nesnas, Wright et al. 2���)
In spite of an explosion of technology and methods, the Service Robots are still not complex
and in their early stages of development. Many researchers specialize in one or more
areas/topics, which usually involve development of algorithms. However, in order to test
the competence on a real robot, a complete system is needed involving a process based
approach. Many of these are required to run in parallel and need to communicate both
synchronously and asynchronously. It has to also accommodate changing application
requirements, incorporate new technology, interoperate in heterogeneous environments,
and maintain viability in changing environments. This puts a tremendous burden on the
developer if he or she has to build everything from scratch and hence a delay in ´Market
readyµ products. Hence, it has become increasingly important to develop Service Robots on
General Platforms and Frameworks. (Ragavan and Ganapathy 2���).
We present a Novel Decentralised Architecture for Navigation and Control of Service Robots
based on control of processes rather than control of discrete actions. The current approach is a
loosely coupled integration of different process technologies and computational mechanisms.
It is our firm contention that a well designed software architectural framework is necessary to
effectively leverage microcontrollers (Read Service Robots), wireless networks (read
Telematics, distributed wireless networks) and process orchestration (read service) to address
problems of complexity, scale and reliability of networked Service Robots

a. .a[ered Architecture and *[brid approaches
Early robotic systems for single functions were designed as control systems with a clear
feedback model. A Sensor generates feedback, which is compared to the expected feedback
derived from a model of the system. Any deviation is used to update the control signal so as
to minimize the error over time. As complexity grew and the robots needed to perform more
than one function, the perception-action loop was extended to have a planning component.
This was a natural linear extension beyond traditional control towards modern day Service
Robots. This resulted in a hierarchical system having an elaborate model of the world, using
sensors to update this model, and to draw conclusions based on the updated model.
Obviously it does not perform very well in dynamic and unpredictable environments as the
sensors and real world models are usually inadequate. That the actions are not a direct
consequence of perception is perhaps the reason why it is also called the sense-plan-act
paradigm.
Reactive approaches are often capable of autonomously exploring new regions in the
environment and, as there is no fixed plan, they are generally able to respond rapidly to any
changes that may occur in the operating environment. Moreover, they are more tolerant to
uncertainties in sensor measurements and the errors. Robots that were running reactive
behaviour based systems performed very well, also in changing environments. However,
the purely reactive scheme is not capable of performing complex tasks. A software

architecture based on purely reactive approach is usually monolithic and requires rewriting
of control software for even small changes in the task, or environment.
On the other hand deliberative navigation methods generally assume that the obstacles in
the environment in which a robot moves are known in terms of their physical location and
dimensions. The navigation task is then to plan a path that is both collision free and satisfies
certain optimization criteria. The classical deliberative approach to navigation is based
entirely on planning and on explicit symbolic models of the world exhausts the computation
resources all along the way (Brooks ����). Even more, it does not seem to operate
successfully in a dynamic changing world. It has difficulties in dealing with sensors
 errors
as well. The models it uses are not realistic; it appears that the world is too complicated to be
presented completely. Attempts to create a complete model that includes all the essential
knowledge needed to deal with the uncertainties and surprises of the real world, became
enormously big and the planning too expensive in time and computer resources. Hence, it
has become increasingly important to leverage upon Hybrid Approaches to robotic
developments across projects and platforms.

b. *[brid Approaches
A hybrid approach, combining low-level reactive behaviours with higher level deliberation
and reasoning, has since then been common among researchers (Arkin ����; Cattoni, Di
Caro et al. ����). The hybrid systems are usually modelled as having three layers as shown
in Figure �; one deliberative, one reactive and one middle layer (Gat ���2) and this approach
for a long time now remains vastly unchallenged.
There is also a sound architectural rationale for having exactly three major components and
not just because three is an aesthetically pleasing number. It has to do with the role of
internal state and with ability to organize algorithms according to whether they contain no
state, contain state reflecting memories about the past, or contain state reflecting predictions
about the future. Abstractions are then used to isolate aspects of reality that can be tracked
or predicted reliably, and to ignore other aspects (Erann ����).

Fig. 2. Three /ayer architectures - AT/ANTIS (Gat ���2) and BERRA (/indstrom, Oreback et
al. 2���)

Gat (1992)

Scales in the Hierarchy

• General, deterministic, persistent, slow,
human readable

• Specialised, stochastic, transient, fast,
unreadable

Nilsson’s Triple Tower

Perception
World
Model

Planning
&

Action
Library

Sensors Actuators

Environment

Nilsson’s Triple Tower

Perception
World
Model

Planning
&

Action
Library

Sensors Actuators

Environment

Cognitive Architectures 
for Robots

Long-Term
Conceptual
Memory

Short-Term
Belief

Memory

Short-Term
Goal Memory

Conceptual
Inference

Skill
Execution

Perception

Environment

Perceptual
Buffer

Problem Solving
Skill Learning

Motor
Buffer

Skill Retrieval
and Selection

Long-Term
Skill Memory

• How to integrate these
specialised components?

• What is an appropriate
architecture?

Icarus – Langley

SOAR

RCS (Albus)

