Exercise sheet 11 – Solutions COMP6741: Parameterized and Exact Computation

Serge Gaspers

Semester 2, 2017

Exercise 1. Show that PATH PACKING has no polynomial kernel unless $NP \subseteq coNP/poly$.

PATH PACKINGInput:A graph G and an integer kParameter:kQuestion:Are there k pairwise vertex-disjoint paths of length at least k each?

Solution. We give a polynomial parameter transformation from LONG PATH to PATH PACKING. Given an instance (G, k) to LONG PATH we construct a graph G' from G by adding k - 1 vertex-disjoint paths of length k. Now, G contains a path of length k if and only if G' contains k vertex-disjoint paths of length k. The construction takes $O(k \cdot (n+m))$ time, where n and m are the number of vertices and edges of G, respectively, and the target parameter is k.

Exercise 2. An *endpoint* of a path is a vertex that has degree at most 1 in the path. Consider the NP-complete ANCHORED PATH problem.

Anchored Path	
Input:	A graph $G = (V, E)$, a vertex $r \in V$, and an integer $k \leq V $
Parameter:	k
Question:	Does G have a path on k vertices as a subgraph such that r is an endpoint of that path?

Prove that ANCHORED PATH has no polynomial kernel unless $coNP \subseteq NP/poly$.

Solution. We give an OR-composition and use the Composition Theorem. To use the Composition Theorem, we need that ANCHORED PATH is

- NP-complete (given in the question statement),
- the parameter can be computed in polynomial time (given in the input),
- and the value of the parameter is at most the instance size (guaranteed in the input specification).

Consider a finite sequence of instances $((G_i, r_i, k))_{1 \le i \le t}$ for ANCHORED PATH. **Construction.** Our OR-composition algorithm computes an instance (G, r, k + 1) that is obtained by taking the disjoint union of all G_i , $1 \le i \le t$, adding a new vertex r that is adjacent to all r_i , $1 \le i \le t$.

Correctness. If some G_i has a path of length k starting from r_i , then adding r to the beginning of that path gives a path of length k + 1 in G starting from r. On the other hand, if G has a path of length k + 1 starting from r, the second vertex in that path is some r_i , and the following k - 1 vertices of the path are all in G_i , and so G_i has a path of length k starting from r_i .

Running time. Clearly polynomial in the input size.