Exercise sheet 11 - Solutions
 COMP6741: Parameterized and Exact Computation

Serge Gaspers

Semester 2, 2017

Exercise 1. Show that Path Packing has no polynomial kernel unless NP \subseteq coNP/poly.

```
Path Packing
    Input: A graph G and an integer }
    Parameter: k
    Question: Are there k pairwise vertex-disjoint paths of length at least k each?
```

Solution. We give a polynomial parameter transformation from Long Path to Path Packing. Given an instance (G, k) to Long Path we construct a graph G^{\prime} from G by adding $k-1$ vertex-disjoint paths of length k. Now, G contains a path of length k if and only if G^{\prime} contains k vertex-disjoint paths of length k. The construction takes $O(k \cdot(n+m))$ time, where n and m are the number of vertices and edges of G, respectively, and the target parameter is k.

Exercise 2. An endpoint of a path is a vertex that has degree at most 1 in the path. Consider the NP-complete Anchored Path problem.

```
Anchored Path
    Input: A graph G=(V,E), a vertex r 
    Parameter: k
    Question: Does G have a path on k}\mathrm{ vertices as a subgraph such that r is an endpoint of that path?
```

Prove that Anchored Path has no polynomial kernel unless coNP \subseteq NP/poly.
Solution. We give an OR-composition and use the Composition Theorem. To use the Composition Theorem, we need that Anchored Path is

- NP-complete (given in the question statement),
- the parameter can be computed in polynomial time (given in the input),
- and the value of the parameter is at most the instance size (guaranteed in the input specification).

Consider a finite sequence of instances $\left(\left(G_{i}, r_{i}, k\right)\right)_{1 \leq i \leq t}$ for Anchored Path.
Construction. Our OR-composition algorithm computes an instance ($G, r, k+1$) that is obtained by taking the disjoint union of all $G_{i}, 1 \leq i \leq t$, adding a new vertex r that is adjacent to all $r_{i}, 1 \leq i \leq t$.
Correctness. If some G_{i} has a path of length k starting from r_{i}, then adding r to the beginning of that path gives a path of length $k+1$ in G starting from r. On the other hand, if G has a path of length $k+1$ starting from r, the second vertex in that path is some r_{i}, and the following $k-1$ vertices of the path are all in G_{i}, and so G_{i} has a path of length k starting from r_{i}.
Running time. Clearly polynomial in the input size.

