
9a. Exponential Time Hypothesis

COMP6741: Parameterized and Exact Computation

Serge Gaspers

School of Computer Science and Engineering, UNSW Sydney, Australia

19T3

S. Gaspers (UNSW) Exponential Time Hypothesis 19T3 1 / 24

Outline

1 SAT and k-SAT

2 Subexponential time algorithms

3 ETH and SETH

4 Algorithmic lower bounds based on ETH

5 Algorithmic lower bounds based on SETH

6 Further Reading

S. Gaspers (UNSW) Exponential Time Hypothesis 19T3 2 / 24

Outline

1 SAT and k-SAT

2 Subexponential time algorithms

3 ETH and SETH

4 Algorithmic lower bounds based on ETH

5 Algorithmic lower bounds based on SETH

6 Further Reading

S. Gaspers (UNSW) Exponential Time Hypothesis 19T3 3 / 24

SAT

SAT
Input: A propositional formula F in conjunctive normal form (CNF)
Parameter: n = |var(F)|, the number of variables in F
Question: Is there an assignment to var(F) satisfying all clauses of F?

k-SAT
Input: A CNF formula F where each clause has length at most k
Parameter: n = |var(F)|, the number of variables in F
Question: Is there an assignment to var(F) satisfying all clauses of F?

Example:

(x1 ∨ x2) ∧ (¬x2 ∨ x3 ∨ ¬x4) ∧ (x1 ∨ x4) ∧ (¬x1 ∨ ¬x3 ∨ ¬x4)

S. Gaspers (UNSW) Exponential Time Hypothesis 19T3 4 / 24

Algorithms for SAT

Brute-force: O∗(2n)

... after > 50 years of SAT solving
(SAT association, SAT conference, JSAT journal, annual SAT competitions,
...)

fastest known algorithm for SAT: O∗(2n·(1−1/O(logm/n))), where m is the
number of clauses [CIP06] [DH09]

However: no O∗(1.9999n) time algorithm is known

fastest known algorithms for 3-SAT: O∗(1.3280n) deterministic [Liu18] and
O∗(1.3070n) randomized [Han+19]

Could it be that 3-SAT cannot be solved in 2o(n) time?

Could it be that SAT cannot be solved in O∗((2− ε)n) time for any ε > 0?

S. Gaspers (UNSW) Exponential Time Hypothesis 19T3 5 / 24

Algorithms for SAT

Brute-force: O∗(2n)

... after > 50 years of SAT solving
(SAT association, SAT conference, JSAT journal, annual SAT competitions,
...)

fastest known algorithm for SAT: O∗(2n·(1−1/O(logm/n))), where m is the
number of clauses [CIP06] [DH09]

However: no O∗(1.9999n) time algorithm is known

fastest known algorithms for 3-SAT: O∗(1.3280n) deterministic [Liu18] and
O∗(1.3070n) randomized [Han+19]

Could it be that 3-SAT cannot be solved in 2o(n) time?

Could it be that SAT cannot be solved in O∗((2− ε)n) time for any ε > 0?

S. Gaspers (UNSW) Exponential Time Hypothesis 19T3 5 / 24

Algorithms for SAT

Brute-force: O∗(2n)

... after > 50 years of SAT solving
(SAT association, SAT conference, JSAT journal, annual SAT competitions,
...)

fastest known algorithm for SAT: O∗(2n·(1−1/O(logm/n))), where m is the
number of clauses [CIP06] [DH09]

However: no O∗(1.9999n) time algorithm is known

fastest known algorithms for 3-SAT: O∗(1.3280n) deterministic [Liu18] and
O∗(1.3070n) randomized [Han+19]

Could it be that 3-SAT cannot be solved in 2o(n) time?

Could it be that SAT cannot be solved in O∗((2− ε)n) time for any ε > 0?

S. Gaspers (UNSW) Exponential Time Hypothesis 19T3 5 / 24

Algorithms for SAT

Brute-force: O∗(2n)

... after > 50 years of SAT solving
(SAT association, SAT conference, JSAT journal, annual SAT competitions,
...)

fastest known algorithm for SAT: O∗(2n·(1−1/O(logm/n))), where m is the
number of clauses [CIP06] [DH09]

However: no O∗(1.9999n) time algorithm is known

fastest known algorithms for 3-SAT: O∗(1.3280n) deterministic [Liu18] and
O∗(1.3070n) randomized [Han+19]

Could it be that 3-SAT cannot be solved in 2o(n) time?

Could it be that SAT cannot be solved in O∗((2− ε)n) time for any ε > 0?

S. Gaspers (UNSW) Exponential Time Hypothesis 19T3 5 / 24

Outline

1 SAT and k-SAT

2 Subexponential time algorithms

3 ETH and SETH

4 Algorithmic lower bounds based on ETH

5 Algorithmic lower bounds based on SETH

6 Further Reading

S. Gaspers (UNSW) Exponential Time Hypothesis 19T3 6 / 24

NP-hard problems in subexponential time?

Are there any NP-hard problems that can be solved in 2o(n) time?

Yes. For example, Independent Set is NP-comlpete even when the input
graph is planar (can be drawn in the plane without edge crossings). Planar
graphs have treewidth O(

√
n) and tree decompositions of that width can be

found in polynomial time (“Planar separator theorem” [Lipton, Tarjan, 1979]).
Using a tree decomposition based algorithm, Independent Set can be
solved in 2O(

√
n) time on planar graphs.

S. Gaspers (UNSW) Exponential Time Hypothesis 19T3 7 / 24

NP-hard problems in subexponential time?

Are there any NP-hard problems that can be solved in 2o(n) time?

Yes. For example, Independent Set is NP-comlpete even when the input
graph is planar (can be drawn in the plane without edge crossings). Planar
graphs have treewidth O(

√
n) and tree decompositions of that width can be

found in polynomial time (“Planar separator theorem” [Lipton, Tarjan, 1979]).
Using a tree decomposition based algorithm, Independent Set can be
solved in 2O(

√
n) time on planar graphs.

S. Gaspers (UNSW) Exponential Time Hypothesis 19T3 7 / 24

Outline

1 SAT and k-SAT

2 Subexponential time algorithms

3 ETH and SETH

4 Algorithmic lower bounds based on ETH

5 Algorithmic lower bounds based on SETH

6 Further Reading

S. Gaspers (UNSW) Exponential Time Hypothesis 19T3 8 / 24

ETH and SETH

Definition 1

For each k ≥ 3, define δk to be the infinimum1 of the set of constants c such that
k-SAT can be solved in O∗(2c·n) time.

Conjecture 2 (Exponential Time Hyphothesis (ETH))

δ3 > 0.

Conjecture 3 (Strong Exponential Time Hyphothesis (SETH))

limk→∞ δk = 1.

Notes: (1) ETH ⇒ 3-SAT cannot be solved in 2o(n) time.
SETH ⇒ SAT cannot be solved in O∗((2− ε)n) time for any ε > 0.

1The infinimum of a set of numbers is the largest number that is smaller or equal to each
number in the set. E.g., the infinimum of {ε ∈ R : ε > 0} is 0.

S. Gaspers (UNSW) Exponential Time Hypothesis 19T3 9 / 24

Outline

1 SAT and k-SAT

2 Subexponential time algorithms

3 ETH and SETH

4 Algorithmic lower bounds based on ETH

5 Algorithmic lower bounds based on SETH

6 Further Reading

S. Gaspers (UNSW) Exponential Time Hypothesis 19T3 10 / 24

Algorithmic lower bounds based on ETH

Suppose ETH is true

Can we infer lower bounds on the running time needed to solve other
problems?

Suppose there is a polynomial-time reduction from 3-SAT to a graph problem
Π, which constructs an equivalent instance where the number of vertices of
the output graph equals the number of variables of the input formula,
|V | = |var(F)|.
Using the reduction, we can conclude that, if Π has an O∗(2o(|V |)) time
algorithm, then 3-SAT has an O∗(2o(|var(F)|)) time algorithm, contradicting
ETH.

Therefore, we conclude that Π has no O∗(2o(|V |)) time algorithm unless ETH
fails.

S. Gaspers (UNSW) Exponential Time Hypothesis 19T3 11 / 24

Algorithmic lower bounds based on ETH

Suppose ETH is true

Can we infer lower bounds on the running time needed to solve other
problems?

Suppose there is a polynomial-time reduction from 3-SAT to a graph problem
Π, which constructs an equivalent instance where the number of vertices of
the output graph equals the number of variables of the input formula,
|V | = |var(F)|.
Using the reduction, we can conclude that, if Π has an O∗(2o(|V |)) time
algorithm, then 3-SAT has an O∗(2o(|var(F)|)) time algorithm, contradicting
ETH.

Therefore, we conclude that Π has no O∗(2o(|V |)) time algorithm unless ETH
fails.

S. Gaspers (UNSW) Exponential Time Hypothesis 19T3 11 / 24

Sparsification Lemma

Issue: Many reductions from 3-SAT create a number of vertices / variables /
elements that are related to the number of clauses of the 3-SAT instance.

Theorem 4 (Sparsification Lemma, [IPZ01])

For each ε > 0 and positive integer k, there is a O∗(2ε·n) time algorithm that
takes as input a k-CNF formula F with n variables and outputs an equivalent
formula F ′ =

∨t
i=1 Fi that is a disjunction of t ≤ 2εn formulas Fi with

var(Fi) = var(F) and |cla(Fi)| = O(n).

S. Gaspers (UNSW) Exponential Time Hypothesis 19T3 12 / 24

Sparsification Lemma

Issue: Many reductions from 3-SAT create a number of vertices / variables /
elements that are related to the number of clauses of the 3-SAT instance.

Theorem 4 (Sparsification Lemma, [IPZ01])

For each ε > 0 and positive integer k, there is a O∗(2ε·n) time algorithm that
takes as input a k-CNF formula F with n variables and outputs an equivalent
formula F ′ =

∨t
i=1 Fi that is a disjunction of t ≤ 2εn formulas Fi with

var(Fi) = var(F) and |cla(Fi)| = O(n).

S. Gaspers (UNSW) Exponential Time Hypothesis 19T3 12 / 24

3-SAT with a linear number of clauses

Corollary 5

ETH ⇒ 3-SAT cannot be solved in O∗(2o(n+m)) time where m denotes the
number of clauses of F .

Observation: Let A, B be parameterized problems and f , g be non-decreasing
functions.
Suppose there is a polynomial-parameter transformation from A to B such that if
the parameter of an instance of A is k, then the parameter of the constructed
instance of B is at most g(k). Then an O∗(2o(f(k))) time algorithm for B implies
an O∗(2o(f(g(k)))) time algorithm for A.

S. Gaspers (UNSW) Exponential Time Hypothesis 19T3 13 / 24

More general reductions are possible

Definition 6 (SERF-reduction)

A SubExponential Reduction Family from a parameterized problem A to a
parameterized problem B is a family of Turing reductions from A to B (i.e., an
algorithm for A, making queries to an oracle for B that solves any instance for B
in constant time) for each ε > 0 such that

for every instance I for A with parameter k, the running time is O∗(2εk), and

for every query I ′ to B with parameter k′, we have that k′ ∈ O(k) and
|I ′| = |I|O(1).

Note: If A is SERF-reducible to B and A has no 2o(k) time algorithm, then B
has no 2o(k

′) time algorithm.

S. Gaspers (UNSW) Exponential Time Hypothesis 19T3 14 / 24

Vertex Cover has no subexponential algorithm

Polynomial-parameter transformation from 3-SAT.
For simplicity, assume all clauses have length 3.
3-CNF Formula F = (u ∨ v ∨ ¬y) ∧ (¬u ∨ y ∨ z) ∧ (¬v ∨ w ∨ x) ∧ (x ∨ y ∨ ¬z)

¬u u ¬v v ¬w w ¬x x ¬y y ¬z z

For a 3-CNF formula with n variables and m clauses, we create a Vertex
Cover instance with |V | = 2n+ 3m, |E| = n+ 6m, and k = n+ 2m.

S. Gaspers (UNSW) Exponential Time Hypothesis 19T3 15 / 24

Vertex Cover has no subexponential algorithm

Polynomial-parameter transformation from 3-SAT.
For simplicity, assume all clauses have length 3.
3-CNF Formula F = (u ∨ v ∨ ¬y) ∧ (¬u ∨ y ∨ z) ∧ (¬v ∨ w ∨ x) ∧ (x ∨ y ∨ ¬z)

¬u u ¬v v ¬w w ¬x x ¬y y ¬z z

For a 3-CNF formula with n variables and m clauses, we create a Vertex
Cover instance with |V | = 2n+ 3m, |E| = n+ 6m, and k = n+ 2m.

S. Gaspers (UNSW) Exponential Time Hypothesis 19T3 15 / 24

Vertex Cover has no subexponential algorithm

Polynomial-parameter transformation from 3-SAT.
For simplicity, assume all clauses have length 3.
3-CNF Formula F = (u ∨ v ∨ ¬y) ∧ (¬u ∨ y ∨ z) ∧ (¬v ∨ w ∨ x) ∧ (x ∨ y ∨ ¬z)

¬u u ¬v v ¬w w ¬x x ¬y y ¬z z

For a 3-CNF formula with n variables and m clauses, we create a Vertex
Cover instance with |V | = 2n+ 3m, |E| = n+ 6m, and k = n+ 2m.

S. Gaspers (UNSW) Exponential Time Hypothesis 19T3 15 / 24

Vertex Cover has no subexponential algorithm II

Theorem 7

ETH ⇒ Vertex Cover has no 2o(|V |) time algorithm.

Theorem 8

ETH ⇒ Vertex Cover has no 2o(|E|) time algorithm.

Theorem 9

ETH ⇒ Vertex Cover has no 2o(k) time algorithm.

S. Gaspers (UNSW) Exponential Time Hypothesis 19T3 16 / 24

Outline

1 SAT and k-SAT

2 Subexponential time algorithms

3 ETH and SETH

4 Algorithmic lower bounds based on ETH

5 Algorithmic lower bounds based on SETH

6 Further Reading

S. Gaspers (UNSW) Exponential Time Hypothesis 19T3 17 / 24

Hitting Set

Recall: A hitting set of a set system S = (V,H) is a subset X of V such that X
contains at least one element of each set in H, i.e., X ∩ Y 6= ∅ for each Y ∈ H.

elts-Hitting Set
Input: A set system S = (V,H) and an integer k
Parameter: n = |V |
Question: Does S have a hitting set of size at most k?

S. Gaspers (UNSW) Exponential Time Hypothesis 19T3 18 / 24

SETH-lower bound for Hitting Set

CNF Formula F = (u ∨ v ∨ ¬y) ∧ (¬u ∨ y ∨ z) ∧ (¬v ∨ w ∨ x) ∧ (x ∨ y ∨ ¬z)
Inidence graph of equivalent Hitting Set instance:

¬u u
¬v v

¬w w
¬x x

¬y y
¬z z

sets

elts

sets

For a CNF formula with n variables and m clauses, we create a Hitting Set
instance with |V | = 2n and k = n.

S. Gaspers (UNSW) Exponential Time Hypothesis 19T3 19 / 24

SETH-lower bound for Hitting Set

Theorem 10

SETH ⇒ Hitting Set has no O∗((2− ε)|V |/2) time algorithm for any ε > 0.

Note: With a more ingenious reduction, one can show that Hitting Set has no
O∗((2− ε)|V |) time algorithm for any ε > 0 under SETH [Cyg+16].

S. Gaspers (UNSW) Exponential Time Hypothesis 19T3 20 / 24

Outline

1 SAT and k-SAT

2 Subexponential time algorithms

3 ETH and SETH

4 Algorithmic lower bounds based on ETH

5 Algorithmic lower bounds based on SETH

6 Further Reading

S. Gaspers (UNSW) Exponential Time Hypothesis 19T3 21 / 24

Further Reading

Chapter 14, Lower bounds based on the Exponential-Time Hypothesis in
[Cyg+15]

Section 11.3, Subexponential Algorithms and ETH in [FK10]

Section 29.5, The Sparsification Lemma in [DF13]

S. Gaspers (UNSW) Exponential Time Hypothesis 19T3 22 / 24

References I

I [CIP06] Chris Calabro, Russell Impagliazzo, and Ramamohan Paturi. “A
Duality between Clause Width and Clause Density for SAT”. In:
Proceedings of the 21st Annual IEEE Conference on Computational
Complexity (CCC 2006). IEEE Computer Society, 2006, pp. 252–260.

I [Cyg+15] Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov,
Dániel Marx, Marcin Pilipczuk, Micha l Pilipczuk, and Saket Saurabh.
Parameterized Algorithms. Springer, 2015.

I [Cyg+16] Marek Cygan, Holger Dell, Daniel Lokshtanov, Dániel Marx,
Jesper Nederlof, Yoshio Okamoto, Ramamohan Paturi, Saket Saurabh,
and Magnus Wahlström. “On Problems as Hard as CNF-SAT”. In:
ACM Transactions on Algorithms 12.3 (2016), 41:1–41:24.

I [DF13] Rodney G. Downey and Michael R. Fellows. Fundamentals of
Parameterized Complexity. Springer, 2013.

I [DH09] Evgeny Dantsin and Edward A. Hirsch. “Worst-Case Upper Bounds”.
In: Handbook of Satisfiability. Vol. 185. Frontiers in Artificial
Intelligence and Applications. IOS Press, 2009, pp. 403–424.

S. Gaspers (UNSW) Exponential Time Hypothesis 19T3 23 / 24

References II

I [FK10] Fedor V. Fomin and Dieter Kratsch. Exact Exponential Algorithms.
Springer, 2010.

I [Han+19] Thomas Dueholm Hansen, Haim Kaplan, Or Zamir, and Uri Zwick.
“Faster k-SAT algorithms using biased-PPSZ”. In: Proceedings of the
51st Annual ACM SIGACT Symposium on Theory of Computing
(STOC 2019). ACM, 2019, pp. 578–589.

I [IPZ01] Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. “Which
Problems Have Strongly Exponential Complexity?” In: Journal of
Computer and System Sciences 63.4 (2001), pp. 512–530.

I [Liu18] Sixue Liu. “Chain, Generalization of Covering Code, and Deterministic
Algorithm for k-SAT”. In: Proceedings of the 45th International
Colloquium on Automata, Languages, and Programming (ICALP
2018). Vol. 107. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum fuer
Informatik, 2018, 88:1–88:13.

S. Gaspers (UNSW) Exponential Time Hypothesis 19T3 24 / 24

	SAT and k-SAT
	Subexponential time algorithms
	ETH and SETH
	Algorithmic lower bounds based on ETH
	Algorithmic lower bounds based on SETH
	Further Reading
	References

