# COMP1511 - Programming Fundamentals

### Term 3, 2019 - Lecture 14

# What did we learn yesterday?

#### Memory

- Using memory beyond what's in our functions
- Allocating memory so that it lasts beyond the lifetime of the curly brackets

### **Multiple File Projects**

- Using Header (\*.h) and Implementation (\*.c) files
- Protecting our data by hiding it
- Providing a nice interface with header functions

# What are we learning today?

### Linked Lists

- Like an array, contains multiple of the same type of variable
- More flexible in that it can change length
- Is also able to add and remove elements from partway through the list
- Tying together structs, pointers and memory allocation

### **Recap - Memory**

#### **Memory Allocation**

- Variables created inside any curly brackets will disappear when they end
- Sometimes we want to create something that persists outside of this
- malloc() allows us to allocate memory within our program
- malloc() returns a pointer to let us know where our allocated memory is
- Then we can use that pointer as if it's pointing at a normal variable
- When we're finished with our allocated memory we must **free()** it
- We can use dcc --leak-check to tell us if we're leaking memory

### **Recap - Multi-file Projects**

### Splitting a project into multiple files

- Header files (\*.h) contain functions declarations and no running code
- They're used to show what the capabilities of the code are
- Implementation files (\*.c) contain full implementations
- This is where the complicated code is hidden
- Other files (like main.c etc) will #include the header files in order to use the functionality
- All C files from the project will be compiled together

### A new kind of struct

Let's make an interesting struct

- This is a node
- It contains some information
- As well as a pointer to another node!

```
struct node {
    struct node *next;
    int data;
}
```

### A Chain of Nodes - a Linked List



### **Linked Lists**

### A chain of these nodes is called a Linked List

### As opposed to Arrays . . .

- Not one continuous block of memory
- Items can be shuffled around by changing where pointers aim
- Length is not fixed when created
- You can add or remove items from inside the list

### Linked Lists in code

What do we need for the simplest possible list?

- A struct for a node
- A pointer to keep track of the start of the list
- A way to create a node and connect it

```
struct node {
    struct node *next;
    int data;
}
```

### A function to add a node

```
// Create a node using the data and next pointer provided
// Return a pointer to this node
struct node *createNode(int data, struct node *next) {
    struct node *n:
    n = malloc(sizeof(struct node));
    if (n == NULL) {
        // malloc returns NULL if there isn't enough memory
        // terminate the program
        printf("Cannot allocate node. Program will exit.\n");
        exit(1);
    n \rightarrow data = data;
    n \rightarrow next = next;
    return n;
}
```

# Building a list from createNode()

```
int main (void) {
    // head will always point to the first element of our list
    struct node *head = createNode(1, NULL);
    head = createNode(2, head);
    head = createNode(3, head);
    head = createNode(4, head);
    head = createNode(5, head);
    return 0;
}
```



CreateNode makes a node with a NULL next and we point head at it





The 2nd node points its "next" at the old head, then it replaces head with its own address



### How it works 3

The process continues . . .



Linked lists don't have indexes ...

- We can't loop through them in the same way as arrays
- We have to follow the links from node to node
- If we reach a NULL node pointer, it means we're at the end of the list

```
// Loop through a list of nodes, printing out their data
void printData(struct node *n) {
    while (n != NULL) {
        printf("%d\n", n->data);
        n = n->next;
    }
}
```







### **Break Time**

### **Linked Lists**

- Pointers, structs and memory allocation
- Structs with pointers to their own type
- Linked Lists combine a lot of our newer code techniques



### **Battle Royale**

#### Let's use a Linked List to track the players in a game

- We're going to start by adding players to the game
- We want to be able to print all the players that are currently in the game (the list of players can change as the game goes on)
- We might want to control the order of the list, so we need to be able to insert at a particular position
- We also want to be able to find and remove players from the list if they're knocked out of the round

### What will our nodes look like?

We're definitely going to want a basic node struct

- Let's start with a name
- And a pointer to the next node

```
struct node {
    char name[MAX_NAME_LENGTH];
    struct node *next;
};
```



#### We'll want a function that creates a node

```
// Create a node using the name and next pointer provided
// Return a pointer to this node
struct node *createNode(char newName[], struct node *newNext) {
    struct node *n;
    n = malloc(sizeof (struct node));
    if (n == NULL) {
        printf("Malloc failed, out of memory\n");
        exit(1);
    }
    strcpy(n->name, newName);
    n->next = newNext;
    return n;
}
```

### **Creating the list itself**

#### Note that we don't need to specify the length of the list!

```
int main(void) {
    // create the list of players
    struct node *head = createNode("Marc", NULL);
    head = createNode("AndrewB", head);
    head = createNode("Tom", head);
    head = createNode("Aang", head);
    head = createNode("Sokka", head);
    return 0;
}
```



#### Head points at the First Node, its next is NULL



### Using createNode

The New Node is created and copies the head pointer for its next



### Using createNode

createNode returns a pointer to New Node, which is assigned to head



# **Printing out the list of players**

How do we traverse a list to see all the elements in it?

- Loop through, starting with the pointer to the head of the list
- Use whatever data is inside the node
- Then move onto the next pointer from that node
- If the pointer is NULL, then we've reached the end of the list

```
// Loop through the list and print out the player names
void printPlayers(struct node* listNode) {
    while (listNode != NULL) {
        printf("%s\n", listNode->name);
        listNode = listNode->next;
    }
}
```

### **Inserting Nodes into a Linked List**

#### Linked Lists allow you to insert nodes in between other nodes

- We can do this by simply aiming next pointers to the right places
- We find two linked nodes that we want to put a node between
- We take the **next** of the first node and point it at our new node
- We take the **next** of the new node and point it at the second node

This is much less complicated with diagrams . . .



Before we've tried to insert anything





A new node is made, it's not connected to anything yet



### **Connect the new node to the second node**

Alter the **next** pointer on the New Node



### **Connect the first node to the new node**

Alter the **next** pointer on the First Node



### **Code for insertion**

```
// Create and insert a new node into a list after a given listNode
struct node *insert(struct node* listNode, char newName[]) {
    struct node *n = createNode(newName, NULL);
        if (listNode == NULL) {
        // List is empty, n becomes the only element in the list
        listNode = n;
        n \rightarrow next = NULL;
    } else {
        n->next = listNode->next;
        listNode->next = n;
    }
    return listNode;
```

### **Inserting Nodes**

We can use insertion to have greater control of where nodes are put in a list

```
int main(void) {
    // create the list of players
    struct node *head = createNode("Marc", NULL);
    insert("AndrewB", head);
    insert("Tom", head);
    insert("Aang", head);
    insert("Sokka", head);
    printPlayers(head);
    return 0;
}
```

### To be continued

### It's a big project . . . we'll continue it later!

- We still want to insert for a reason (thinking about keeping lists sorted)
- We haven't yet looked at removal from a list
- Once we have all the functionality we need, we'll actually run the game

# What did we learn today?

### Linked Lists

- A new struct that can point at its own type
- Chaining nodes together forms a list
- Nodes can have a variety of information in them
- Code for creation of nodes and lists
- Looping through the lists
- Inserting nodes after specific nodes