
COMP4418: Knowledge Representation
and Reasoning
Resolution

Maurice Pagnucco
School of Computer Science and Engineering

COMP4418, Week 2

1

Goal

Deductive reasoning in language as close as possible to full FOL
¬,∧,∨,∃,∀

Knowledge Level:
given KB, α, determine if KB |= α
or given an open α(x1, x2, . . . xn), find t1, t2, . . . tn

such that KB |= α(t1, t2, . . . tn)
When KB is finite {α1, α2, . . . , αk}

KB |= α
iff |= [{α1 ∧ α2 ∧ . . . ∧ αk} → α]
iff KB ∪{¬α} is unsatisfiable
iff KB ∪{¬α} |= FALSE

So want a procedure to test for validity, or satisfiability, or for entailing FALSE.

2
B&L (2005)

Clausal Representation
Formula = set of clauses
Clause = set of literals
Literal = atomic sentence or it’s negation

positive literal and negative literal
positive predicate and negative predicate in FOL

Notation:
• If p is a literal, then p̄ is its complement

p̄ ⇒ ¬p ¬̄p ⇒ p

• To distinguish clauses from formulas:
◦ [and] for clauses: [p,¬r, s]◦ { and } for formulas: {[p,¬r, s], [p, r, s], [¬p]}

[] is the empty clause; {} is the empty formula
So {} is different from {[]}!

Interpretation:
• Formula understood as conjunction of clauses
• Clause understood as disjunction of clauses
• Literals understood normally

So:
• {[p,¬q], [r], s]} is a representation of ((p ∨ ¬q) ∧ r ∧ s)

• [] is a representation of FALSE
• {} is a representation of TRUE

3
B&L (2005)

Resolution Rule of Inference

Given two clauses, infer a new clause:
From clause {p} ∪ C1

and {¬p} ∪ C2,
infer clause C1 ∪ C2.

C1 ∪ C2 is called a resolvent of input clauses with respect to p.
Example:

From clauses [w , p, q] and [w , s,¬p], have [w , q, s] as resolvent wrt p.
Special Case:

[p] and [¬p] resolve to []
C1 and C2 are empty

A derivation of a clause c from a set S of clauses is a sequence c1, c2, . . . , cn of
clauses, where the last clause cn = c, and for each ci , either

1. ci ∈ S, or

2. ci is a resolvent of two earlier clauses in the derivation

Write: S ` c if there is a derivation

4
B&L (2005)

Resolution Rule of Inference

• Generalised Resolution Rule:

For clauses χ ∨ Φ and ¬Ψ ∨ ζ

χ ∨ Φ ¬Ψ ∨ ζ

(χ ∨ ζ).θ

l
l
l
l
l
l
ll

,
,

,
,

,
,

,,

• Where θ is a unifier for atomic formulae Φ and Ψ

• χ ∨ ζ is known as the resolvent

5

Rationale

Resolution is a symbol-level rule of inference, but has a connection to
knowledge-level logical interpretations
Resolvent is entailed by input clauses
Suppose I |= (p ∨ α) and I |= (¬p ∨ β)

Case 1: I |= p
then I |= β, so I |= (α ∨ β).

Case 2: I 2 p
then I |= α, so I |= (α ∨ β).

Either way, I |= (α ∨ β).
So: {(p ∨ α), (¬p ∨ β)} |= (α ∨ β).

Special case:
[p] and [¬p] resolve to [],
so {[p], [¬p]} |= FALSE
that is: {[p], [¬p]} is unsatisfiable

6
B&L (2005)

Derivations and entailment

Can extend the previous argument to derivations:
If S ` c then S |= c
Proof: by induction on the length of the derivation.

Show (by looking at the two cases) that S |= ci .
But the converse does not hold in general

Can have S |= c without having S ` c.
Example: {[¬p]} |= [¬p,¬q], i.e., ¬p |= (¬p ∨ ¬q)
but no derivation

However, . . .
Resolution is sound and complete for [] !

Theorem: S ` [] iff S |= []
Result will carry over to quantified clauses (later)

So for any set S of clauses:
S is unsatisfiable iff S ` [].

Provides method for determining satisfiability:
Search all derivations to see if [] is produced

Also provides method for determining all entailments

7
B&L (2005)

Example

KB:
∀x GradStudent(x)→ Student(x)
∀x Student(x)→ HardWorker(x)
GradStudent(sue)

Q: HardWorker(sue)

8
B&L (2005)

The 3 block example

KB = {On(a,b), On(b,c), Green(a), ¬Green(c)}
already in CNF

Q = ∃x∃y [On(x ,y) ∧ Green(x) ∧ ¬Green(y)]
Note: ¬Q has no existentials to eliminate;
yields {[¬On(x ,y), ¬Green(x), Green(y)]} in CNF

9
B&L (2005)

Arithmetic

KB:
Plus(zero,x ,x)
Plus(x ,y ,z)→ Plus(succ(x),y ,succ(z))

Q: ∃u Plus(2,3,u)
where for readability, we use

0 for zero,
3 for succ(succ(succ(zero))) etc.

10
B&L (2005)

Answer predicates

In full FOL, have possibility of deriving ∃xP(x) without being able to derive P(t) for any t
e.g. the three-blocks problem
∃x∃y [On(x ,y) ∧ Green(x) ∧ ¬Green(y)]
but cannot derive which block is which

Solution: answer-extraction process
replace query ∃xP(x) by ∃x [P(x) ∧ ¬A(x)],

where A is a new predicate symbol called the answer predicate
instead of deriving [], derive any clause containing just the answer predicate
can always convert a derivation of []

Example KB: {Student(john), Student(jane), Happy(john)}
Q: ∃x [Student(x) ∧ Happy(x)]

11
B&L (2005)

Disjunctive answers

Example KB: {Student(john), Student(jane), [Happy(john) ∨ Happy(jane)]}
Q: ∃x [Student(x) ∧ Happy(x)]

Note:
can have variables in answer
need to watch for Skolem symbols . . .

12
B&L (2005)

A Problem

KB: LessThan(succ(x), y)→ LessThan(x , y)
Q: LessThan(zero, zero)

Should fail since KB 6|= Q

Infinte branch of resolvents
cannot use a simple depth-first procedure to search for []

13
B&L (2005)

Undecidability
Is there a way to detect when this happens?
No! FOL is very powerful
• can be used as a full programming language
• just as there is no way to detect in general when a program is looping

There can be no procedure that does this:
Proc[Clauses] =

If Clauses are unsatisfiable
then return YES
else return NO

However: Resolution is complete some branch will contain [], for unsat clauses

So breadth-first search guaranteed to find []
search may not terminate on satisfiable clauses

14
B&L (2005)

Overly specific unifiers

In general, no way to guarantee efficiency, or even termination
later: put control into users’ hands

One major way:
reduce redundancy in search, by keeping search as general as possible

Example:
. . . , P(g(x), f (x), z)] [¬P(y , f (w), a), . . .
unified by
θ1 = {x/b, y/g(b), z/a,w/b} gives P(g(b), f (b), a)

and by
θ2 = {x/f (z), y/g(f (z)), z/a,w/f (z)} gives P(g(f (z)), f (f (z)), a).

Might not be able to derive [] from clauses having overly specific substitutions
wastes time in search!

15
B&L (2005)

Most general unifiers
θ is a most general unifier of literals l1 and l2 iff

1. θ unifies l1 and l2
2. for any other unifier θ′, there is another substitution θ∗ such that θ′ = θθ∗

note: composition θθ∗ requires applying θ∗ to terms in θ
for previous example, an MGU is

θ = {x/w , y/g(w), z/a}
for which

θ1 = θ{w/b}
θ2 = θ{w/f (z)}

Theorem: Can limit search to MGUs only without loss of completeness (with certain caveats)
Computing an MGU, given a set of lits {li}

1. Start with θ = {}.

2. If all the liθ are identical, then done; otherwise, get disagreement set, DS
e.g. P(a, f (a, g(z), . . . P(a, f (a, u, . . . disagreement set, DS = {u, g(z)}

3. Find a variable v ∈ DS, and a term t ∈ DS not containing v . If not, fail.

4. θ = θ{v/t}
5. Go to 2

Note: there is a better linear algorithm

16
B&L (2005)

Herbrand Theorem

Some 1st-order cases can be handled by converting them to a propositional form
Given a set of clauses S

• the Herbrand universe of S is the set of all terms formed using only the function symbols (and
constants, at least one) in S

for example, if S uses (unary) f , and c, d ,
U = {c, d , f (c), f (d), f (f (c)), f (f (d)), f (f (f (c))), . . .}

• the Herbrand base of S is
{cθ|c ∈ S and θ replaces the variables in c by terms from the Herbrand universe}

Theorem: S is satisfiable iff Herbrand base is (applies to Horn clauses also)
Herbrand base has no variables, and so is essentially propositional, though usually infinite

• finite, when Herbrand universe is finite
can use propositional methods (guaranteed to terminate)

• sometimes other “type” restrictions can be used to keep the Herbrand base finite
include f (t) only if t is the correct type

17
B&L (2005)

Resolution is difficult!
First-order resolution is not guaranteed to terminate.
What can be said about the propositional case?
• Recently shown by Haken that there are unsatisfiable clauses {c1, c2, . . . , cn} such that the

shortest derivation of [] contains on the order of 2n clauses
• Even if we could always find a derivation immediately, the most clever search procedure will

still require exponential time on some problems
Problem just with resolution?
• Probably not.
• Determining if set of clauses is satisfiable shown by Cook to be NP-complete

◦ no easier than an extremely large variety of computational tasks
◦ any search task where what is searched for can be verified in polynomial time can be

recast as a satisfiability problem
satisfiability
does graph of cities allow for a full tour of size k miles?
can N queens be put on an N × N chessboard all safely?
. . .

• Satisfiability is strongly believed

18
B&L (2005)

Implications for KR
Problem: want to produce entailments of KB as needed for immediate action
• full theorem-proving may be too difficult for KR!
• need to consider other options

giving control to user
procedural representations (later)

less expressive languages
e.g. Horn clauses (and a major theme later)

In some applications, it is reasonable to wait
• e.g. mathematical theorem proving, where we only care about specific formula

Best to hope for in general: reduce redundancy
• refinements to resolution to improve search

Main example: MGU, as before
• but many other possibilities

need to be careful to preserve completeness
• ATP: automated theorem proving

area that studies strategies for proving difficult theorems
main application: mathematics, but relevance also to KR

19
B&L (2005)

Strategies
1. Clause elimination

• pure clause
contains literal l such that ¬l does not appear in any other clause
clause cannot lead to []

• tautology
clause with a literal and its negation
any path to [] can bypass tautology

• subsumed clause
a clause such that one with a subset of its literals is already present
path to [] need only pass through short clause
can be generalized to allow substitutions

2. Ordering strategies
many possible ways to order search, but best and simplest is

• unit preference
prefer to resolve unit clauses first
Why? Given unit clause and another clause, resolvent is a smaller one← []

20
B&L (2005)

Strategies 2
3. Set of support
• KB is usually satisfiable, so not very useful to resolve among clauses with only ancestors in KB
• contradiction arises from interaction with ¬Q
• always resolve with at least one clause that has an ancestor in ¬Q
• preserves completeness (sometimes)

4. Connection graph
• pre-compute all possible unifications
• build a graph with edges between any two unifiable literals of opposite polarity

label edge with MGU
• Resolution procedure:

repeatedly:
select link
compute resolvent
inherit links from parents after substitution

• Resolution as search:
find sequence of links L1, L2, . . . producing []

21
B&L (2005)

Strategies 3

5. Special treatment for equality

• instead of using axioms for =, relexitivity, symmetry, transitivity, substitution of equals for equals

• use new inference rule: paramodulation

• from {(t = s)} ∪ C1 and {P(. . . t ′ . . .)} ∪ C2 where tθ = t ′θ

• infer {P(. . . s . . .)}θ ∪ C1θ ∪ C2θ.

• collapses many resolution steps into one; see also: theory resolution (later)

6. Sorted logic

• terms get sorts:
x :Male mother:[Person→ Female]

• keep taxonomy of sorts

• refuse to unify P(s) with P(t) unless sorts are compatible

• assumes only “meaningful” paths will lead to []

22
B&L (2005)

Finally . . .
7. Directional connectives
• given [¬p, q], can interpret as either

from p, infer q (forward)
to prove q, prove p (backward)
procedural reading of→

• In 1st case:

would only resolve [¬p, q] with [p,. . .] producing [q,. . .]
• In 2nd case:

would only resolve [¬p, q] with [¬q,. . .] producing [¬p,. . .]
• Intended application:

forward: Battleship(x)→ Gray(x)
do not want to try to prove something is gray by proving it is a battleship

backward: Human(x)→ Has(x ,spleen)
do not want to conclude from someone being human,
that she has each property

• the basis for the procedural representations

23
B&L (2005)

	Introduction

