COMP4418: Knowledge Representation and Reasoning

Resolution

Maurice Pagnucco
School of Computer Science and Engineering
COMP4418, Week 2

Goal

Deductive reasoning in language as close as possible to full FOL

$$
\neg, \wedge, \vee, \exists, \forall
$$

Knowledge Level:
given KB, α, determine if $\mathrm{KB} \models \alpha$
or given an open $\alpha\left(x_{1}, x_{2}, \ldots x_{n}\right)$, find $t_{1}, t_{2}, \ldots t_{n}$ such that $\mathrm{KB} \vDash \alpha\left(t_{1}, t_{2}, \ldots t_{n}\right)$
When KB is finite $\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right\}$

$\mathrm{KB} \vDash \alpha$

iff $\models\left[\left\{\alpha_{1} \wedge \alpha_{2} \wedge \ldots \wedge \alpha_{k}\right\} \rightarrow \alpha\right]$
iff $\mathrm{KB} \cup\{\neg \alpha\}$ is unsatisfiable
iff $\mathrm{KB} \cup\{\neg \alpha\} \models$ FALSE
So want a procedure to test for validity, or satisfiability, or for entailing FALSE.

Clausal Representation

Formula $=$ set of clauses
Clause $=$ set of literals
Literal = atomic sentence or it's negation positive literal and negative literal positive predicate and negative predicate in FOL
Notation:

- If p is a literal, then \bar{p} is its complement $\bar{p} \Rightarrow \neg p \quad \bar{\neg} p \Rightarrow p$
- To distinguish clauses from formulas:

O [and] for clauses: $[p, \neg r, s$]

- $\{$ and $\}$ for formulas: $\{[p, \neg r, s],[p, r, s],[\neg p]\}$
[] is the empty clause; $\}$ is the empty formula So $\}$ is different from $\{[]\}$
Interpretation:
- Formula understood as conjunction of clauses
- Clause understood as disjunction of clauses
- Literals understood normally

So:

- $\{[p, \neg q],[r], s]\}$ is a representation of $((p \vee \neg q) \wedge r \wedge s)$
- [] is a representation of FALSE
- $\}$ is a representation of TRUE

Resolution Rule of Inference

Given two clauses, infer a new clause:
From clause $\{p\} \cup C_{1}$
and
$\{\neg p\} \cup C_{2}$,
infer clause
$C_{1} \cup C_{2}$.
$C_{1} \cup C_{2}$ is called a resolvent of input clauses with respect to p.
Example:
From clauses $[w, p, q]$ and $[w, s, \neg p]$, have $[w, q, s]$ as resolvent wrt p.
Special Case:
[p] and $[\neg p$] resolve to []
C_{1} and C_{2} are empty
A derivation of a clause c from a set S of clauses is a sequence $c_{1}, c_{2}, \ldots, c_{n}$ of clauses, where the last clause $c_{n}=c$, and for each c_{i}, either

1. $c_{i} \in S$, or
2. c_{i} is a resolvent of two earlier clauses in the derivation

Write: $S \vdash c$ if there is a derivation

Resolution Rule of Inference

- Generalised Resolution Rule:

For clauses $\chi \vee \Phi$ and $\neg \psi \vee \zeta$

- Where θ is a unifier for atomic formulae Φ and ψ
- $\chi \vee \zeta$ is known as the resolvent

Rationale

Resolution is a symbol-level rule of inference, but has a connection to knowledge-level logical interpretations
Resolvent is entailed by input clauses
Suppose $I \models(p \vee \alpha)$ and $I \models(\neg p \vee \beta)$
Case 1: $I \models p$
then $I \models \beta$, so $I \models(\alpha \vee \beta)$.
Case 2: $I \not \models p$
then $I \models \alpha$, so $I \vDash(\alpha \vee \beta)$.
Either way, $I=(\alpha \vee \beta)$.
So: $\{(p \vee \alpha),(\neg p \vee \beta)\} \vDash(\alpha \vee \beta)$.
Special case:
[p] and $[\neg p]$ resolve to [],
so $\{[p],[\neg p]\} \models$ FALSE
that is: $\{[p],[\neg p]\}$ is unsatisfiable

Derivations and entailment

Can extend the previous argument to derivations:
If $S \vdash c$ then $S \models c$
Proof: by induction on the length of the derivation.
Show (by looking at the two cases) that $S \models c_{i}$.
But the converse does not hold in general
Can have $S \models c$ without having $S \vdash c$.
Example: $\{[\neg p]\} \models[\neg p, \neg q]$, i.e., $\neg p \models(\neg p \vee \neg q)$
but no derivation
However, ...
Resolution is sound and complete for [] !
Theorem: $S \vdash[]$ iff $S \models[]$
Result will carry over to quantified clauses (later)
So for any set S of clauses:
S is unsatisfiable iff $S \vdash[]$.
Provides method for determining satisfiability:
Search all derivations to see if [] is produced
Also provides method for determining all entailments

Example

KB:

```
\forall GradStudent( }x\mathrm{ ) }->\mathrm{ Student( }x\mathrm{ )
\forall Student( }x\mathrm{ ) }->\mathrm{ HardWorker( }x\mathrm{ )
GradStudent(sue)
Q: HardWorker(sue)
```


The 3 block example

```
\(K B=\{\operatorname{On}(\mathrm{a}, \mathrm{b}), \operatorname{On}(\mathrm{b}, \mathrm{c}), \operatorname{Green}(\mathrm{a}), \neg \operatorname{Green}(\mathrm{c})\}\)
    already in CNF
\(\mathrm{Q}=\exists x \exists y[\operatorname{On}(x, y) \wedge \operatorname{Green}(x) \wedge \neg \operatorname{Green}(y)]\)
```

 Note: \(\neg \mathrm{Q}\) has no existentials to eliminate;
 yields \(\{[\neg \operatorname{On}(x, y), \neg \operatorname{Green}(x)\), \(\operatorname{Green}(y)]\}\) in CNF

Arithmetic

KB:
Plus(zero, x, x)
Plus $(x, y, z) \rightarrow$ Plus $(\operatorname{succ}(x), y, \operatorname{succ}(z))$
Q: $\quad \exists u$ Plus $(2,3, u)$
where for readability, we use
0 for zero,
3 for succ(succ(succ(zero))) etc.

Answer predicates

In full FOL, have possibility of deriving $\exists x P(x)$ without being able to derive $P(t)$ for any t e.g. the three-blocks problem

```
\(\exists x \exists y[\operatorname{On}(x, y) \wedge \operatorname{Green}(x) \wedge \neg \operatorname{Green}(y)]\)
```

but cannot derive which block is which

Solution: answer-extraction process
replace query $\exists x P(x)$ by $\exists x[P(x) \wedge \neg A(x)]$,
where A is a new predicate symbol called the answer predicate instead of deriving [], derive any clause containing just the answer predicate can always convert a derivation of []
Example KB: \{Student(john), Student(jane), Happy(john) \}
Q: $\quad \exists x[\operatorname{Student}(x) \wedge \operatorname{Happy}(x)]$

Disjunctive answers

Example KB: \{Student(john), Student(jane), [Happy(john) \vee Happy(jane)]\}
Q: $\exists x[\operatorname{Student}(x) \wedge \operatorname{Happy}(x)]$

Note:
can have variables in answer
need to watch for Skolem symbols

A Problem

KB: LessThan $(\operatorname{succ}(x), y) \rightarrow$ LessThan (x, y)
Q: LessThan(zero, zero) Should fail since KB $\not \vDash Q$
$[\operatorname{LessThan}(x, y), \neg \operatorname{LessThan}(\operatorname{succ}(x), y)]$

Infinte branch of resolvents
cannot use a simple depth-first procedure to search for []

Undecidability

Is there a way to detect when this happens?
No! FOL is very powerful

- can be used as a full programming language
- just as there is no way to detect in general when a program is looping

There can be no procedure that does this:

$$
\begin{aligned}
& \text { Proc[Clauses] = } \\
& \text { If Clauses are unsatisfiable } \\
& \text { then return YES } \\
& \text { else return NO }
\end{aligned}
$$

However: Resolution is complete some branch will contain [], for unsat clauses

So breadth-first search guaranteed to find []
search may not terminate on satisfiable clauses

Overly specific unifiers

In general, no way to guarantee efficiency, or even termination later: put control into users' hands
One major way:
reduce redundancy in search, by keeping search as general as possible Example:
$\ldots, P(g(x), f(x), z)] \quad[\neg P(y, f(w), a), \ldots$
unified by
$\theta_{1}=\{x / b, y / g(b), z / a, w / b\} \quad$ gives $P(g(b), f(b), a)$
and by

$$
\theta_{2}=\{x / f(z), y / g(f(z)), z / a, w / f(z)\} \quad \text { gives } P(g(f(z)), f(f(z)), a)
$$

Might not be able to derive [] from clauses having overly specific substitutions wastes time in search!

Most general unifiers

θ is a most general unifier of literals I_{1} and I_{2} iff

1. θ unifies I_{1} and I_{2}
2. for any other unifier θ^{\prime}, there is another substitution θ^{*} such that $\theta^{\prime}=\theta \theta^{*}$ note: composition $\theta \theta^{*}$ requires applying θ^{*} to terms in θ for previous example, an MGU is

$$
\theta=\{x / w, y / g(w), z / a\}
$$

for which

$$
\begin{aligned}
& \theta_{1}=\theta\{w / b\} \\
& \theta_{2}=\theta\{w / f(z)\}
\end{aligned}
$$

Theorem: Can limit search to MGUs only without loss of completeness (with certain caveats)
Computing an MGU, given a set of lits $\left\{I_{i}\right\}$

1. Start with $\theta=\{ \}$.
2. If all the $l_{i} \theta$ are identical, then done; otherwise, get disagreement set, $D S$

$$
\text { e.g. } P(a, f(a, g(z), \ldots \quad P(a, f(a, u, \ldots \quad \text { disagreement set, } D S=\{u, g(z)\}
$$

3. Find a variable $v \in D S$, and a term $t \in D S$ not containing v. If not, fail.
4. $\theta=\theta\{v / t\}$
5. Go to 2

Note: there is a better linear algorithm

Herbrand Theorem

Some 1st-order cases can be handled by converting them to a propositional form Given a set of clauses S

- the Herbrand universe of S is the set of all terms formed using only the function symbols (and constants, at least one) in S
for example, if S uses (unary) f, and c, d, $U=\{c, d, f(c), f(d), f(f(c)), f(f(d)), f(f(f(c))), \ldots\}$
- the Herbrand base of S is $\{c \theta \mid c \in S$ and θ replaces the variables in c by terms from the Herbrand universe $\}$
Theorem: S is satisfiable iff Herbrand base is (applies to Horn clauses also)
Herbrand base has no variables, and so is essentially propositional, though usually infinite
- finite, when Herbrand universe is finite
can use propositional methods (guaranteed to terminate)
- sometimes other "type" restrictions can be used to keep the Herbrand base finite include $f(t)$ only if t is the correct type

Resolution is difficult!

First-order resolution is not guaranteed to terminate.
What can be said about the propositional case?

- Recently shown by Haken that there are unsatisfiable clauses $\left\{c_{1}, c_{2}, \ldots, c_{n}\right\}$ such that the shortest derivation of [] contains on the order of 2^{n} clauses
- Even if we could always find a derivation immediately, the most clever search procedure will still require exponential time on some problems
Problem just with resolution?
- Probably not.
- Determining if set of clauses is satisfiable shown by Cook to be NP-complete
- no easier than an extremely large variety of computational tasks
- any search task where what is searched for can be verified in polynomial time can be recast as a satisfiability problem
satisfiability
does graph of cities allow for a full tour of size k miles?
can N queens be put on an $N \times N$ chessboard all safely?
- Satisfiability is strongly believed

Implications for KR

Problem: want to produce entailments of KB as needed for immediate action

- full theorem-proving may be too difficult for KR!
- need to consider other options
giving control to user
procedural representations (later)
less expressive languages
e.g. Horn clauses (and a major theme later)

In some applications, it is reasonable to wait

- e.g. mathematical theorem proving, where we only care about specific formula

Best to hope for in general: reduce redundancy

- refinements to resolution to improve search

Main example: MGU, as before

- but many other possibilities
need to be careful to preserve completeness
- ATP: automated theorem proving
area that studies strategies for proving difficult theorems
main application: mathematics, but relevance also to KR

Strategies

1. Clause elimination

- pure clause
contains literal / such that $\neg /$ does not appear in any other clause
clause cannot lead to []
- tautology
clause with a literal and its negation
any path to [] can bypass tautology
- subsumed clause
a clause such that one with a subset of its literals is already present path to [] need only pass through short clause
can be generalized to allow substitutions

2. Ordering strategies
many possible ways to order search, but best and simplest is

- unit preference
prefer to resolve unit clauses first
Why? Given unit clause and another clause, resolvent is a smaller one $\leftarrow[]$

Strategies 2

3. Set of support

- KB is usually satisfiable, so not very useful to resolve among clauses with only ancestors in KB
- contradiction arises from interaction with $\neg Q$
- always resolve with at least one clause that has an ancestor in \neg Q
- preserves completeness (sometimes)

4. Connection graph

- pre-compute all possible unifications
- build a graph with edges between any two unifiable literals of opposite polarity
label edge with MGU
- Resolution procedure:
repeatedly:
select link
compute resolvent
inherit links from parents after substitution
- Resolution as search:
find sequence of links L_{1}, L_{2}, \ldots producing []

Strategies 3

5. Special treatment for equality

- instead of using axioms for =, relexitivity, symmetry, transitivity, substitution of equals for equals
- use new inference rule: paramodulation
- from $\{(t=s)\} \cup C_{1}$ and $\left\{P\left(\ldots t^{\prime} \ldots\right)\right\} \cup C_{2}$ where $t \theta=t^{\prime} \theta$
- infer $\{P(\ldots s \ldots)\} \theta \cup C_{1} \theta \cup C_{2} \theta$.
- collapses many resolution steps into one; see also: theory resolution (later)

6. Sorted logic

- terms get sorts:
x :Male mother:[Person \rightarrow Female]
- keep taxonomy of sorts
- refuse to unify $P(s)$ with $P(t)$ unless sorts are compatible
- assumes only "meaningful" paths will lead to []

Finally ...

7. Directional connectives

- given $[\neg p, q]$, can interpret as either
from p, infer q
(forward)
to prove q, prove p procedural reading of \rightarrow
- In 1st case:
would only resolve $[\neg p, q]$ with $[p, \ldots]$ producing $[q, \ldots]$
- In 2nd case:
would only resolve $[\neg p, q]$ with $[\neg q, \ldots]$ producing $[\neg p, \ldots]$
- Intended application:
forward: $\quad \operatorname{Battleship}(x) \rightarrow \operatorname{Gray}(x)$ do not want to try to prove something is gray by proving it is a battleship
backward: $\quad \operatorname{Human}(x) \rightarrow \operatorname{Has}(x$, spleen $)$
do not want to conclude from someone being human, that she has each property
- the basis for the procedural representations

