# Exercise sheet 7 <br> COMP6741: Parameterized and Exact Computation 

Serge Gaspers

Semester 2, 2017

Exercise 1. A Boolean formula in Conjunctive Normal Form ( $C N F$ ) is a conjunction (AND) of disjunctions (OR) of literals (a Boolean variable or its negation). A HORN formula is a CNF formula where each clause contains at most one positive literal. For a CNF formula $F$ and an assignment $\tau: S \rightarrow\{0,1\}$ to a subset $S$ of its variables, the formula $F[\tau]$ is obtained from $F$ by removing each clause that contains a literal that evaluates to 1 under $S$, and removing all literals that evaluate to 0 from the remaining clauses.

```
HORN-Backdoor Detection
    Input: A CNF formula }F\mathrm{ and an integer }k\mathrm{ .
    Parameter: k
    Question: Is there a subset S of the variables of F with |S| \leqk such that for each assignment \tau:S->{0,1},
        the formula }F[\tau]\mathrm{ is a HORN formula?
```

Example: $(\neg a \vee b \vee c) \wedge(b \vee \neg c \vee \neg d) \wedge(a \vee b \vee \neg e) \wedge(\neg b \vee c \vee \neg e)$ with $k=1$ is a YES-instance, certified by $S=\{b\}$.

- Show that HORN-Backdoor Detection is FPT using the fact that Vertex Cover is FPT.


## Exercise 2. Show that Weighted Circuit Satisfiability $\in X P$.

Exercise 3. Recall that a $k$-coloring of a graph $G=(V, E)$ is a function $f: V \rightarrow\{1,2, \ldots, k\}$ assigning colors to $V$ such that no two adjacent vertices receive the same color.

```
Multicolor Clique
    Input: A graph G=(V,E), an integer k, and a k-coloring of G
    Parameter: k
    Question: Does G have a clique of size k?
```

- Show that Multicolor Clique is W[1]-hard.

Exercise 4. A set system $\mathcal{S}$ is a pair $(V, H)$, where $V$ is a finite set of elements and $H$ is a set of subsets of $V$. A set cover of a set system $\mathcal{S}=(V, H)$ is a subset $X$ of $H$ such that each element of $V$ is contained in at least one of the sets in $X$, i.e., $\bigcup_{Y \in X} Y=V$.

```
Set Cover
    Input: A set system S}=(V,H)\mathrm{ and an integer k
    Parameter: k
    Question: Does S have a set cover of cardinality at most k?
```



- Show that Set Cover is W[2]-hard.

Exercise 5. A hitting set of a set system $\mathcal{S}=(V, H)$ is a subset $X$ of $V$ such that $X$ contains at least one element of each set in $H$, i.e., $X \cap Y \neq \emptyset$ for each $Y \in H$.

| Hitting SET |  |
| :--- | :--- |
| Input: | A set system $\mathcal{S}=(V, H)$ and an integer $k$ |
| Parameter: | $k$ |
| Question: | Does $\mathcal{S}$ have a hitting set of size at most $k ?$ |



- Show that Hitting Set is W[2]-hard.

