Exercise sheet 7 COMP6741: Parameterized and Exact Computation

Serge Gaspers

Semester 2, 2017

Exercise 1. A Boolean formula in Conjunctive Normal Form (CNF) is a conjunction (AND) of disjunctions (OR) of literals (a Boolean variable or its negation). A HORN formula is a CNF formula where each clause contains at most one positive literal. For a CNF formula F and an assignment $\tau : S \to \{0, 1\}$ to a subset S of its variables, the formula $F[\tau]$ is obtained from F by removing each clause that contains a literal that evaluates to 1 under S, and removing all literals that evaluate to 0 from the remaining clauses.

HORN-BACKDOOR DETECTION		
Input:	A CNF formula F and an integer k .	
Parameter:	k	
Question:	Is there a subset S of the variables of F with $ S \leq k$ such that for each assignment $\tau : S \to \{0, 1\}$, the formula $F[\tau]$ is a HORN formula?	

Example: $(\neg a \lor b \lor c) \land (b \lor \neg c \lor \neg d) \land (a \lor b \lor \neg e) \land (\neg b \lor c \lor \neg e)$ with k = 1 is a YES-instance, certified by $S = \{b\}$.

• Show that HORN-BACKDOOR DETECTION is FPT using the fact that VERTEX COVER is FPT.

Exercise 2. Show that WEIGHTED CIRCUIT SATISFIABILITY $\in XP$.

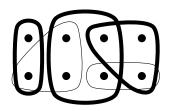
Exercise 3. Recall that a *k*-coloring of a graph G = (V, E) is a function $f : V \to \{1, 2, ..., k\}$ assigning colors to V such that no two adjacent vertices receive the same color.

Multicolor Clique		
Input:	A graph $G = (V, E)$, an integer k, and a k-coloring of G	
Parameter:	k	
Question:	Does G have a clique of size k ?	

• Show that MULTICOLOR CLIQUE is W[1]-hard.

Exercise 4. A set system S is a pair (V, H), where V is a finite set of elements and H is a set of subsets of V. A set cover of a set system S = (V, H) is a subset X of H such that each element of V is contained in at least one of the sets in X, i.e., $\bigcup_{Y \in X} Y = V$.

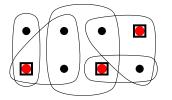
Set Cover	
Input:	A set system $\mathcal{S} = (V, H)$ and an integer k
Parameter:	k
Question:	Does \mathcal{S} have a set cover of cardinality at most k ?



• Show that SET COVER is W[2]-hard.

Exercise 5. A *hitting set* of a set system $\mathcal{S} = (V, H)$ is a subset X of V such that X contains at least one element of each set in H, i.e., $X \cap Y \neq \emptyset$ for each $Y \in H$.

HITTING SET	
Input:	A set system $\mathcal{S} = (V, H)$ and an integer k
Parameter:	k
Question:	Does S have a hitting set of size at most k ?



• Show that HITTING SET is W[2]-hard.