
COMP1511 - Programming
Fundamentals

Week 7 - Lecture 12

What did we learn last lecture?
Memory

● Using memory beyond what's in our functions
● Allocating memory so that it lasts beyond the lifetime of the curly brackets

Multiple File Projects

● Using Header (*.h) and Implementation (*.c) files
● Protecting our data by hiding it
● Providing a nice interface with header functions

What are we covering today?
Command Line Arguments

● Adding information to our program when it runs

Linked Lists

● Like an array, contains multiple of the same type of variable
● More flexible in that it can change length
● Is also able to add and remove elements from partway through the list
● Tying together structs, pointers and memory allocation

Characters and Strings Recap
Our new variable type: char

● Represents a letter
● Is also a number, an ASCII code, and we'll often use ints to represent a

character
● When used in arrays, they're referred to as strings
● Strings often end before the end of the array they're stored in
● When they do, we store a null terminator '\0' after the last character

Strings in Code
Strings are arrays of type char, but they have a convenient shorthand

Both of these strings will be created with 6 elements. The letters h,e,l,l,o
and the null terminator \0

 // a string is an array of characters
 char word1[] = {'h','e','l','l','o','\0'};
 // but we also have a convenient shorthand
 // that feels more like words
 char word2[] = "hello";

h e l l o \0

Command Line Arguments
Sometimes we want to give information to our program at the moment
when we run it

● The "Command Line" is where we type in commands into the terminal
● Arguments are another word for input parameters

● This extra text we type after the name of our program can be passed into
our program as strings

$./program extra information 1 2 3

Main functions that accept arguments
int main doesn't have to have void input parameters!

● argc will be an "argument count"
● This will be an integer of the number of words that

were typed in (including the program name)
● argv will be "argument values"
● This will be an array of strings where each string is one

of the words

int main(int argc, char *argv[]) {
}

An example of use of arguments

#include <stdio.h>

int main(int argc, char *argv[]) {
 int i = 1;
 printf("Well actually %s says there's no such thing as ", argv[0]);
 while (i < argc) {
 fputs(argv[i], stdout);
 printf(" ");
 i++;
 }
 printf("\n");
}

Arguments in argv are always strings
But what if we want to use things like numbers?

● We can read the strings in, but we might want to process them

● In this example, how do we read 1 2 3 as numbers?
● We can use a library function to convert the strings to integers!
● strtol() - "string to long integer" is from the stdlib.h

$./program extra information 1 2 3

Code for transforming strings to ints

#include <stdio.h>
#include <stdlib.h>

int main(int argc, char *argv[]) {
 int total = 0;

 int i = 1;
 while (i < argc) {
 total += strtol(argv[i], NULL, 10);
 i++;
 }
 printf("Total is %d.\n", total);

}

Adding together the command line arguments

A new kind of struct
Let's make an interesting struct

● This is a node
● It contains some information
● As well as a pointer to another node of the same type!

struct node {
 struct node *next;
 int data;
}

A Chain of Nodes - a Linked List

A program's memory (not to scale)

Node

Next

Data

Node

Next

Data

Node

Next

Data

Node

Next

Data
A
pointer
to the
first
node

NULL

Linked Lists
A chain of these nodes is called a Linked List

As opposed to Arrays . . .

● Not one continuous block of memory
● Items can be shuffled around by changing where pointers aim
● Length is not fixed when created
● You can add or remove items from anywhere in the list

Linked Lists in code
What do we need for the simplest possible list?

● A struct for a node
● A pointer to keep track of the start of the list
● A way to create a node and connect it

struct node {
 struct node *next;
 int data;
}

A function to add a node
// Create a node using the data and next pointer provided
// Return a pointer to this node
struct node *createNode(int data, struct node *next) {
 struct node *n;
 n = malloc(sizeof(struct node));
 if (n == NULL) {
 // malloc returns NULL if there isn't enough memory
 // terminate the program
 printf("Cannot allocate node. Program will exit.\n");
 exit(1);
 }
 n->data = data;
 n->next = next;
 return n;
}

Building a list from createNode()

int main (void) {
 // head will always point to the first element of our list
 struct node *head = createNode(1, NULL);
 head = createNode(2, head);
 head = createNode(3, head);
 head = createNode(4, head);
 head = createNode(5, head);

 return 0;
}

How it works 1

A program's memory (not to scale)

Node

Next

1
HEAD NULL

CreateNode makes a node with a NULL next and we point head at it

How it works 2

A program's memory (not to scale)

Node

Next

2
HEAD

Node

Next

1
NULL

The 2nd node points its "next" at the old head, then it replaces head with its
own address

How it works 3

A program's memory (not to scale)

Node

Next

3
HEAD

Node

Next

2

Node

Next

1
NULL

The process continues . . .

Break Time
Linked Lists

● Pointers, structs and memory allocation
● Structs with pointers to their own type
● Linked Lists combine a lot of our newer

code techniques

Looping through a Linked List
Linked lists don't have indexes . . .

● We can't loop through them in the same way as arrays
● We have to follow the links from node to node
● If we reach a NULL node pointer, it means we're at the end of the list

// Loop through a list of nodes, printing out their data
void printData(struct node *n) {
 while (n != NULL) {
 printf("%d\n", n->data);
 n = n->next;
 }
}

Looping through a Linked List

A program's memory (not to scale)

Node

Next

Data

Node

Next

Data
Head

Start with a pointer
that's a copy of Head

NULL

Looping through a Linked List

A program's memory (not to scale)

Node

Next

Data

Node

Next

Data
Head

After you're finished with a node, copy its
Next pointer to reach the next node

NULL

Looping through a Linked List

A program's memory (not to scale)

Node

Next

Data

Node

Next

Data
Head

NULL

Eventually, copying the Next
pointer results in NULL.

That's when the loop stops

Battle Royale
Let's use a Linked List to track the players in a game

● We're going to start by adding players to the game
● We want to be able to print all the players that are currently in the game

(the list of players can change as the game goes on)
● We might want to control the order of the list, so we need to be able to

insert at a particular position
● We also want to be able to find and remove players from the list if they're

knocked out of the round

What will our nodes look like?
We're definitely going to want a basic node struct

● Let's start with a name
● And a pointer to the next node

struct node {
 char name[MAX_NAME_LENGTH];
 struct node *next;
};

Creating nodes
We'll want a function that creates a node

// Create a node using the name and next pointer provided
// Return a pointer to this node
struct node *createNode(char newName[], struct node *newNext) {
 struct node *n;
 n = malloc(sizeof (struct node));
 if (n == NULL) {
 printf("Malloc failed, out of memory\n");
 exit(1);
 }
 strcpy(n->name, newName);
 n->next = newNext;
 return n;
}

Creating the list itself
Note that we don't need to specify the length of the list!

int main(void) {
 // create the list of players
 struct node *head = createNode("Marc", NULL);
 head = createNode("AndrewB", head);
 head = createNode("Tom", head);
 head = createNode("Aang", head);
 head = createNode("Sokka", head);

 return 0;
}

Using createNode

A program's memory (not to scale)

First Node

Next

1
head NULL

Head points at the First Node, its next is NULL

Using createNode

A program's memory (not to scale)

New Node

Next

2 head

First Node

Next

1
NULL

The New Node is created and copies the head pointer for its next

Next
copies
head

Using createNode

A program's memory (not to scale)

New Node

Next

2
head

First Node

Next

1
NULL

createNode returns a pointer to New Node, which is assigned to head

Next
copies
head

Printing out the list of players
How do we traverse a list to see all the elements in it?

● Loop through, starting with the pointer to the head of the list
● Use whatever data is inside the node
● Then move onto the next pointer from that node
● If the pointer is NULL, then we've reached the end of the list

// Loop through the list and print out the player names
void printPlayers(struct node* listNode) {
 while (listNode != NULL) {
 printf("%s\n", listNode->name);
 listNode = listNode->next;
 }
}

To be continued
It's a big project . . . we'll continue it later!

● We might want to insert at a different place in the list
● We still want to insert for a reason (thinking about keeping lists sorted)
● We haven't yet looked at removal from a list
● Once we have all the functionality we need, we'll actually run the game

What did we learn today?
Command Line Arguments

● Taking information as the program is run

Linked Lists

● A new struct that can point at its own type
● Chaining nodes together forms a list
● Nodes can have a variety of information in them
● Code for creation of nodes and lists
● Looping through the lists

