Lab 9

COMP9021, Session 2, 2015

1 Using linked lists to represent polynomials

Extend the program that implements a class Polynomial from the previous lab to implement the
functions __add__(), __sub__(, __mul__() and __truediv__Q)

Next is a possible interaction.

$ python

>>> from polynomial import *

>>> poly_6 = Polynomial(’-2x + 7x"3 +x - 0 + 2 -x"3 + x723 - 12x78 + 45 x ~ 6 -x747’)
>>> print(poly_6)

-x"47 + x723 - 12x78 + 45x"6 + 6x°3 - x + 2

>>> poly_7 = Polynomial(’2x7"5 - 71x73 + 8x72 - 93x74 -6x + 192’)
>>> poly_8 = Polynomial(’192 -71x"3 + 8x72 + 2x”5 -6x - 93x74’)
>>> poly_9 = poly_7 + poly_8

>>> print(poly_7)

2x75 - 93x74 - 71x"3 + 8x72 - 6x + 192

>>> print(poly_8)

2x75 - 93x74 - 71x"3 + 8x72 - 6x + 192

>>> print(poly_9)

4x75 - 186x74 - 142x"3 + 16x72 - 12x + 384

>>> print(poly_7 * poly_7)

4x710 - 372x79 + 8365x78 + 13238x”7 + 3529x76 + 748x"5 - 34796x74 - 27360x"3 + 3108x"2 - 2304x + 36864
>>> print(poly_7)

2x75 - 93x74 - 71x"3 + 8x72 - 6x + 192

>>> print(poly_7 - poly_7)

0

>>> print(poly_7)

2x75 - 93x74 - 71x"3 + 8x72 - 6x + 192

>>> print(poly_9 / poly_7)

2

>>> print(poly_9)

4x"5 - 186x74 - 142x73 + 16x72 - 12x + 384

>>> print(poly_7)

2x75 - 93x74 - 71x"3 + 8x72 - 6x + 192

>>> poly_10 = Polynomial(’-11x"4 + 3x72 + 7x + 9’)

>>> poly_11 = Polynomial(’5x"2 -8x - 6’)

>>> poly_12 = poly_10 * poly_11

>>> print(poly_12)

-56x76 + 88x”5 + 81x74 + 11x"3 - 29x72 - 114x - 54

>>> print(poly_12 / poly_10)

5x72 - 8x - 6

>>> print(poly_12 / poly_11)

-11x74 + 3x72 + 7x + 9

>>> poly_13 = poly_6 * poly_7



>>> print(poly_13 / poly_6)

2x75 - 93x74 - 71x"3 + 8x72 - 6x + 192

>>> print(poly_13 / poly_7)

-x"47 + x723 - 12x78 + 45x76 + 6x"3 - x + 2

2 I'= Using a stack to evaluate fully parenthesised expressions

Modify the program postfix.py from the 9th lecture so that a stack is used to evaluate an arith-
metic expression written in infix, fully parenthesised, and built from natural numbers using the
binary +, -, * and / operators. Fully parenthesised means that all expressions of the form e + €,
* e’ and e / € are surrounded by a pair of parentheses, brackets or braces. Of course a
simple solution would be to replace all brackets and braces by parentheses and call eval (), but
here we want to use a stack.

e-e,e

Hint: think of popping when and only when a closing parenthesis, bracket or brace is being pro-
cessed.

Here is a possible interaction:

$ python

>>> from exercise_2 import *

>>> expression = FullyParenthesisedExpression(’2’)

>>> expression.evaluate()

2

>>> expression = FullyParenthesisedExpression(’(2 + 3)’)

>>> expression.evaluate()

5

>>> expression = FullyParenthesisedExpression(’[(2 + 3) / 10]’)
>>> expression.evaluate()

0.5

>>> expression = FullyParenthesisedExpression(’(12 + [{[13 + (4 + 5)] - 10} / (7 * 8)1)7)
>>> expression.evaluate()

12.214285714285714

3 Back to context free grammars

A context free grammar is a set of production rules of the form
symbol_O --> symbol_1 ... symbol_n

where symbol_0, ..., symbol_n are either terminal or nonterminal symbols, with symbol_0 being
necessarily nonterminal. A symbol is a nonterminal symbol iff it is denoted by a word built from
underscores or uppercase letters. A special nonterminal symbol is called the start symbol. The
language generated by the grammar is the set of sequences of terminal symbols obtained by replacing



a nonterminal symbol by the sequence on the right hand side of a rule having that nonterminal
symbol on the left hand side, starting with the start symbol. For instance, the following, where
EXPRESSION is the start symbol, is a context free grammar for a set of arithmetic expressions.

EXPRESSION --> TERM SUM_OPERATOR EXPRESSION
EXPRESSION --> TERM

TERM --> FACTOR MULT_OPERATOR TERM
TERM --> FACTOR

FACTOR --> NUMBER

FACTOR --> (EXPRESSION)

NUMBER --> DIGIT NUMBER

NUMBER --> DIGIT

DIGIT --> 0

DIGIT --> 9

SUM_OPERATOR --> +

SUM_OPERATOR --> -

MULT_OPERATOR -->

MULT_OPERATOR --> /

Moreover, blank characters (spaces or tabs) can be inserted anywhere except inside a number. For
instance, (2 + 3) * (10 - 2) - 12 * (1000 + 15) is an arithmetic expression generated by the
grammar.

Verify that the grammar is unambiguous, in the sense that every expression generated by the
grammar has a unique evaluation.

Write down a program that prompts for an expression, checks whether it can be generated by the
grammar, and in case the answer is yes, evaluates the expression, following this kind of interaction:

$ python exercise_3.py

Input expression: 2

The expression evaluates to: 2

$ python exercise_3.py

Input expression: 2 * 2

The expression evaluates to: 4

$ python exercise_3.py

Input expression: (2 + 3) * (10 - 2) - 12 * (1000 + 15)
The expression evaluates to: -12140
$ python exercise_3.py

Input expression: 2 + +3

Incorrect syntax



	Using linked lists to represent polynomials
	red'122 Using a stack to evaluate fully parenthesised expressions
	Introduction to context free grammars

