COMP1511 - Programming
Fundamentals

— Term 1, 2020 - Livestream S

Let's write some code

Element Benders are having a fight in a forest!

A team of four benders against one very powerful enemy

We'll create a struct that represents a bender

We'll have four of them in a team

And one who will fight them all

We'll create some functions that pit the benders against each other
We'll loop a series of attacks until either side has lost

Create Structs for Characters

Create a struct to allow us to represent the characters

We'll borrow the one we created earlier

struct bender {
char name[MAX LENGTH] ;
char element[MAX LENGTH];
int power;
int health;

Create the actual struct variables

The struct is defined, now we create the actual variables

e Theteam can bein an array

int main (void) {
struct bender companions[TEAM SIZE];
strcpy (companions[0] .name, "Avatar Aang");
strcpy (companions[0] .element, "Air");
companions[0] .power = 10;
companions[0] .health = 5;
strcpy (companions[1l] .name, "Katara");
strcpy (companions|[1l] .element, "Water'");
companions[l] .power = 7;
companions[1l] .health = 7;
// etc

The struct is a variable type

Each instance of the struct can have a different name and stats

e Which means we can use the same struct for different characters!
e |t also means that any of our characters are now interchangeable

struct bender zuko;

strcpy (zuko.name, "Prince Zuko") ;
strcpy (zuko.element, "Fire");
zuko.power = 20;

zuko.health = 20;

Let's use a function for a single attack

We pass pointers to structs in the function

This allows the function to make changes to our characters

void attack(struct bender *attacker, struct bender *target) {
printf ("%s attacks %s for %d damage.\n",
attacker->name, target->name, attacker->power
) ;
target->health -= attacker->power;
if (target->health <= 0) {
// target has run out of health
printf ("%s is knocked out.\n", target->name) ;

Passing addresses into functions

e We're passing addresses of structs to the attack function

e We do this by declaring that the function takes pointers as input (*)

e And when we call the function, we provide the addresses (&) of the
variables

e This allows the function to know where it can access our data (including
the ability to change it)

Calling the attack function

If we just want a duel between one bender and Zuko

int teamCount = 0;
attack (&zuko, &companions|[teamCount]) ;
attack (&companions[teamCount], &zuko);

But if we want to be able to use pointers to each of them

int teamCount = 0;

struct bender *companion = &companions|[teamCount];
struct bender *prince = &zuko;

attack (prince, companion) ;

attack (companion, prince);

Let's fight until one side loses

Let's loop and keep attacking until either side is knocked out

e We'll need a function that tells us whether either side has run out of
health

e Then we'll need a loop that keeps the fight going, letting the companions
step in for each other if one is knocked out

stillAlive()

int stillAlive (struct bender *solo, struct bender team[TEAM SIZE]) ({
int sAlive = 1;
int tAlive = 0;
if (solo->health <= 0) {
sAlive = 0;
}
int 1 = 0;
while (i < TEAM SIZE) {
if (team[i] .health > 0) {
tAlive = 1;
}
i++;
}

return sAlive * tAlive;

The main loop

int teamCount = 0;
struct bender *companion = &companions|[teamCount];
declareElement (companion) ;
struct bender *prince = &zuko;
while (stillAlive (prince, companions)) {
if (companion->health <= 0) ({
// this companion is knocked out, move on
benderCount++;
companion = &companions|[teamCount];
declareElement (companion) ;
} else {
attack (prince, companion) ;
attack (companion, prince)

The declareElement function

A void function doesn't give any information back to the rest of the program
but it still might have some useful side effects

// A simple function to declare a bender's name and their element
void declareElement (struct bender *fighter) {
printf (
"$s wields the element: %s\n",
fighter->name,
fighter->element

)

We might want a bit more variation

Introducing rand() - Arandom number generator from C's Standard
Library

e C(alling rand () will return an int from a generated sequence
The sequence appears random
e Butif we run the program again, it will generate the same sequence!

e srand() allows us to give a seed to our random number generator
e We can use "seed" values to select different sequences to use
e If we try to run different seeds every time, we'll get different sequences

Seed the rand() with command line input

e We can take input from the command line that ran the program and use
that as our seed value
e This lets us change the sequence each time

int main (int argc, char *argv[]) {
if (argc > 1) {
// if we received a command line argument,
// use that as our random seed
srand(strtol (argv([1l], NULL, 10));

Let's add some randomness to the attack

Using rand and % we can get an int that's between 0 and a number

e Now the damage is inconsistent, we won't always know the result

void attack (struct bender *attacker, struct bender *target) {
int damage = rand() % attacker->power;
printf ("%$s attacks %s for %d damage.\n",
attacker->name, target->name, damage
)
target->health -= damage;
if (target->health <= 0) {
// target has run out of health
printf ("%s is knocked out.\n", target->name) ;

So we have a complete element bender battle!

We're looping through the fight and we don't always know the outcome!

e We've declared our first struct
e We also used it just like a variable in an array
e We passed pointers to our structs into functions

What's next?

e (Can you write better style than this?
e There are a few places where separating things into functions would be
very effective at increasing readability!

