
0Welcome!
COMP1511 18s1

Programming Fundamentals

1COMP1511 18s1
— Lecture 15 —

malloc + Lists
Andrew Bennett

<andrew.bennett@unsw.edu.au>

2

Overview
after this lecture, you should be able to…

have a better understanding of malloc

be able to reason about dynamic memory management

have a basic understanding of lists

understand the fundamentals of self-referential and linked data structures

(note: you shouldn’t be able to do all of these immediately after watching this lecture. however, this lecture should (hopefully!) give you the foundations you need to develop these skills. remember: programming is

like learning any other language, it takes consistent and regular practice.)

3

Admin
Don’t panic!

assignment 2
(if you haven’t started yet, start ASAP)

deadline extended to Sunday 13th May

assignment 1
tutor marking/feedback in progress

week 8 weekly test due tonight
don’t be scared!

don’t forget about help sessions!
see course website for details

4

malloc
allocates memory in “the heap”

memory “lives” forever until we free it
(or the program ends)

syntax:

malloc(number of bytes to allocate);

returns a pointer to the block of allocated memory
(i.e. the address of the memory, so we know how to find it!)

5

malloc – how many bytes?

malloc(number of bytes to allocate);

if we want 1000 ints, how many bytes is that?

1000?

how big is an int?

6

sizeof
we can find out the size of a type with sizeof

syntax:

sizeof(type);

// e.g. for an int:

sizeof(int);

printf("%ld", sizeof (char)); // 1

printf("%ld", sizeof (int)); // 4 commonly

printf("%ld", sizeof (double)); // 8 commonly

printf("%ld", sizeof (int[10])); // 40 commonly

printf("%ld", sizeof (int *)); // 4 or 8 commonly

printf("%ld", sizeof "hello"); // 6

7

malloc: syntax

// allocating enough memory for 1000 ints

malloc(1000 * sizeof(int));

remember, malloc returns the address of the memory it’s allocated:

// allocating enough memory for 1000 ints

int *p = malloc(1000 * sizeof(int));

8

malloc – when things go wrong
what happens if the allocation fails?

int *p = malloc(1000 * sizeof(int));

if (p == NULL) {

 fprintf(stderr, "Error: couldn't allocate memory!\n");

 exit(1);

}

9

free
when we’re done with the memory, we need to free it

void free (void *obj);

release memory associated with a reference.
must be the same reference we got when allocating!

10

Newton’s 3rd Law of Memory Management
“For every malloc, there is an equal and opposite free.”

why?

memory is a finite resource.

leaking memory is bad practice,
especially in long-lived programs.

(see, e.g., Chrome)

11

Putting it together

int *p;

p = malloc(100000000 * sizeof (int));

if (p == NULL) {

 printf("Error: array could not be allocated.\n");

 exit(1);

}

// we can now use the pointer

// ... lots of things to do

// free up the memory that was used

free(p);

12

let’s look at something new…

13

Remember Arrays?
arrays: a contiguous block of memory

(a continuous series of boxes in memory)

each item has a known location –
it’s right after the previous item

int array[7] = { 3, 1, 4, 1, 5, 9, 2 };

gives us a sequence of elements in memory:

┄─┬────┬────┬────┬────┬────┬────┬────┬─┄

 │ 3 │ 1 │ 4 │ 1 │ 5 │ 9 │ 2 │

┄─┴────┴────┴────┴────┴────┴────┴────┴─┄

14

Varying the Length
what if we don’t know how big our array needs to be in advance?

what if we need to increase the length?

in C, we have dynamic allocation…
but that’s still (effectively) fixed in length

we need a new way to represent
collections of things

15

Discontinuity
We could have several pointers to separate allocations:

int *a = malloc (1 * sizeof (int));

*a = 3;

int *b = malloc (1 * sizeof (int));

*b = 1;

int *c = malloc (1 * sizeof (int));

*c = 4;

// ... and so on

we’d have to hold on to all those pointers…
and we don’t have a nice way to do that.

┄┬────┬┄ ┄┬────┬┄ ┄┬────┬┄ ┄┬────┬┄

 │ 3 │ │ 9 │ │ 5 │ │ 2 │

┄┴────┴┄ ┄┴────┴┄ ┄┴────┴┄ ┄┴────┴┄

 ┄┬────┬┄ ┄┬────┬┄ ┄┬────┬┄

 │ 1 │ │ 4 │ │ 1 │

 ┄┴────┴┄ ┄┴────┴┄ ┄┴────┴┄

16
… what if each item knows

where the next one is?

17

introducing: lists

18

Continual Discontinuity
 ╭───╮ ╭───╮ ╭───╮ ╭───╮
 │ 3 ├─╮ │ 5 ├───│ 9 ├───│ 2 ├╳
 ╰───╯ │ ╰───╯ ╰───╯ ╰───╯
 │ ╰───────────────╮
 ╭───╮ ╭───╮ ╭───╮ │
 │ 1 ├───│ 4 ├───│ 1 ├─╯
 ╰───╯ ╰───╯ ╰───╯

19

Continual Discontinuity
a sequence of nodes,

each with a value and a next

╭───╮
│ 3 ├─*
╰───╯

20

Continual Discontinuity

struct node {

 struct node *next;

 int data;

};

21

One Fish…
╭───╮
│ 3 ├─*
╰───╯
 a

struct node a = { 3 };

22

Two Fish…
╭───╮ ╭───╮
│ 3 ├─* │ 1 ├─*
╰───╯ ╰───╯
 a b

struct node a = { 3 };

struct node b = { 1 };

23

Red Fish…
╭───╮ ╭───╮
│ 3 ├────│ 1 ├─*
╰───╯ ╰───╯
 a b

struct node a = { 3 };

struct node b = { 1 };

a.next = &b;

24

Blue Fish!
╭───╮ ╭───╮
│ 3 ├────│ 1 ├─╳
╰───╯ ╰───╯
 a b

struct node a = { 3 };

struct node b = { 1 };

a.next = &b;

b.next = NULL;

25

… pointers?
╭───╮ ╭───╮
│ 3 ├────│ 1 ├─╳
╰───╯ ╰───╯
 a b

struct node a = { 3 };

struct node b = { 1 };

a.next = &b;

*(a.next).next = NULL;

26

… pointers!
╭───╮ ╭───╮ ╭───╮
│ 3 ├────│ 1 ├────│ 4 ├─╳
╰───╯ ╰───╯ ╰───╯
 a b c

struct node a = { 3 };

struct node b = { 1 };

struct node c = { 4 };

a.next = &b;

a.next->next = &c;

a.next->next->next = &d;

