Welcomel!
COMP1511 18s1

Programming Fundamentals

COMP1511 18s1
— Lecture 6 —
Loops + Arrays

Andrew Bennett

<andrew.bennett@unsw.edu.au>

loops inside loops
stopping loops
arrays

Before we begin...

introduce yourself to the person sitting next to you

why did they decide to study computing?

Feedback

upload lecture code

upload/incorporate diagrams
in lecture recordings

more diagrams

go through programs as a whole
before running them

lecture subtitles

Overview

after this lecture, you should be able to...

write programs using nested while loops to solve simple problems

understand how to stop loops
using loop counters and sentinel variables

understand the basics of arrays

understand the basics of designing a solution to a problem

(time permitting)

(note: you shouldn’t be able to do all of these immediately after watching this lecture. however, this lecture should (hopefully!) give you the foundations you need to develop these skills. remember: programming is like

learning any other language, it takes consistent and regular practice.)

Don't panic!

lecture recordings are on WebCMS3

I'll try to add drawings/diagrams + upload to YouTube
course style guide published

weekly test due wednesday

don't be scared!

assignment 1 coming soon

more on that tomorrow!

don't forget about help sessions!

see course website for details

Loops

what if we want to do something multiple times?

Use a loop!

keep doing this while this condition is true

Anatomy of a Loop

initialisation
set up our variables

condition
while “something”...

statements
things we do inside our loop

update
move along to the next iteration

Anatomy of a Loop

// 1initialisation
int 1 = 0;

// condition

while (1 < n) {
// statements -- do something in the loop
printf("Hello!\n");

// update
1++;

Stopping: Loop Counters

int num;
printf ("Enter a number: ");
scanf ("%d", &num);

int 1 = 0;

while (1 < num) {
printf ("hello, world!\n");
1=1+1;

Stopping: Sentinel Value (Flag)

// Print out the number that the user entered
// Stop when they type 0

int n = 1;

while (n != 0) {
printf ("You entered: %d\n", n);
scanf("%d", &n);

Nested Loops

while (something) {
while (somethingElse) {

}

12
Nested Loops

int 1 = 0;
while (1 < n) {
int j = 0;
while (j < n) {
// do something
printf("!!");
J++;

}

1++;

revisiting: variables

Variables

variables are like a box
that can hold a value
of a certain type

Variables

we can have as many variables as we like

Lots of Variables

sometimes we want to store a lot of related variables

int mark_student@® = 85;
I |
| 85 |
| |
int mark_studentl = 90;
I |
| 90 |
| |
int mark_student2 = 45;
I |
| 45 |
| |

Lots of Variables

sometimes we want to store a lot of related variables

int mark_student@® = 85;
int mark_studentl = 90;
int mark_student2 = 45;

double averageMark = (mark_studentl + mark_student2 + mark_student3)/3;
printf("The average mark was: %Lf\n", averageMark);

This doesn't scale!

introducing: arrays

A series of boxes with a common type,
all next to each other

I T T T 1l T T T Il T T T I

! 1] 1 Il] I] Il]] I L

A series of boxes with a common type,
all next to each other

| | | Il 1 | | Ir

| | | I | | | IL_

Suppose we need to compute statistics on class marks...

int mark_student®, mark_studentl, mark_student2, ...;
mark_student® = 85;
mark_studentl = 90;
mark_student?2 = 45;

becomes unfeasible if dealing with a lot of values
.. we'd need hundreds of individual variables!

Solution: Use an array!

int mark[1160];
mark[@] = 85;
mark[1] = 90;
mark[2] = 45;

a collection of array elements
each element must be the same type

we refer to arrays by their index
valid indices for

n
elements are

0...n—1

no real limit on number of elements

we cannot assign, scan, or print whole arrays...
but we can assign, scan, and print elements

// Declare an array with 10 elements
// and initialises all elements to 0.
int myArray[10] = {0};

0

0

0

i
2| ©
|

0

0

0

0

0

| @

1

2

| 3

| 4

5

| ©

/

| 8

)

int myArray[10] = {0};

// Put some values into the array.
myArray[0] = 3;

myArray[5] = 17;

I I I I I I I
| 3] e o] o o] 17| 0|
| I l | l | I

0

0

0

le 11 12 13 |4 |5 o6 |7

| 8

9

int myArray[10] = {0};

// Put some values into the array.
myArray[0] = 3;

myArray[5] = 17;

myArray[10] = 42; // <-- Error

I I I I I I I
| 3] e o] o o] 17| 0|
| I l | I | I

0

0

e 1 12 I3 |14 |5 |6 |

/

| 8

9

Reading an Array

scanf() can'tread an entire array.
this will only read 1 number:

#define ARRAY_SIZE 42

int array[ARRAY_SIZE];
scanf ("%d", &array);

instead, you must read the elements one by one:

int 1 = 0;

while (i < ARRAY_SIZE) {
scanf ("%d", &array[i]);
1++;

Printing an Array

printf() also can't print an entire array.
this won't compile...

#define ARRAY_SIZE 42

int array[ARRAY_SIZE];
printf ("%d", array);

instead, you must print the elements one by one:

int 1 = 0;

while (i < ARRAY_SIZE) {
printf ("%d", array[i]);
1++;

Copying an Array

given:

#define ARRAY_SIZE 5
int arrayl[ARRAY_SIZE] = {1, 4, 9, 16, 25%};
int array2[ARRAY_SIZE];

this won't compile...

array2 = arrayl;

instead, you must copy the elements one by one:

int 1 = 0;

while (1 < ARRAY_SIZE) {
array2[i] = arrayl[i];
1++;

