COMP4418: Knowledge
Representation and Reasoning

Logic and Prolog

Maurice Pagnucco
School of Computer Science and Engineering
University of New South Wales
NSW 2052, AUSTRALIA

morri@cse.unsw.edu.au

COMP4418 ©UNSW, 2017



COMP4418, Wednesday 9 August, 2017 Reasoning Under Uncertainty

Logic and Prolog

Prolog stands for programming in logic
How does the implementation of Prolog relate to logic?
Prolog is based on resolution theorem proving in first-order logic

In this lecture we will look at the relationship between automated
reasoning in first-order logic and Prolog

References:

Ivan Bratko, Prolog Programming for Artificial Intelligence,
Addison-Wesley, 2001. (Chapter 2)

COMP4418 ©UNSW, 2017 Generated: 26 July 2017



COMP4418, Wednesday 9 August, 2017 Reasoning Under Uncertainty

Overview

Problems

Undecidability of first-order logic
Horn Clauses

SLD Resolution

Prolog

Back Chaining

Forward Chaining

Negation as Failure

Conclusion

COMP4418 ©UNSW, 2017 Generated: 26 July 2017



COMP4418, Wednesday 9 August, 2017 Reasoning Under Uncertainty

Resolution — Problem 1

We have seen that the resolution rule is sound:
IfT'Fo,thenT =0

However, the resolution rule is not complete in general:
{=P} &= =PV —Q but cannot show this using resolution ({—P} F
PV —Q)

Resolution 1s sound and complete when used as a refutation system
though:
I'FOifand only if I' =0J

Therefore, resolution should be used as a refutation system as we
have done so far

COMP4418 ©UNSW, 2017 Generated: 26 July 2017



COMP4418, Wednesday 9 August, 2017 Reasoning Under Uncertainty

Resolution — Problem 2

KB = {P(f(x) = P(x)}
Q= P(a)?
Obviously KB ~= Q

However, let us attempt to show this using resolution
~P(f(x)) v P(x) ~P(a)

x/a

~P(f(a))

x/f(a)

~P(f(f(a))

x/f(f(a))

~P(f(f(f(a)))

COMP4418 ©UNSW, 2017 Generated: 26 July 2017



COMP4418, Wednesday 9 August, 2017 Reasoning Under Uncertainty

Undecidability of First-Order Logic

Can we determine in general when this problem will arise?
Answer: no!

There 1s no general procedure

if (KB unsatisfiable)
return Yes; Halt
else return No; Halt

Resolution is refutation complete so if KB 1s unsatisfiable search tree
will contain empty clause somewhere

Can find empty clause using breadth-first search (why?) but if the
search tree does not contain the empty clause the search may go on
forever

Even in the propositional case (which is decidable), complexity of
resolution is O(2")

COMP4418 ©UNSW, 2017 Generated: 26 July 2017



COMP4418, Wednesday 9 August, 2017 Reasoning Under Uncertainty

Horn Clauses

Idea: use less expressive language

Review
Literals — atomic sentence or its negation

Clause — disjunction of literals

Horn Clause — at most one positive literal (e.g., =PV Q, PV -0V RV
S)

Essentially represents a formula of the form A; A...ANA, = C
Thati1s,1f Ay and ... and A,,, then C

Definite (Positive) Clause — exactly one positive literal

Negative Clause — no positive literals

COMP4418 ©UNSW, 2017 Generated: 26 July 2017



COMP4418, Wednesday 9 August, 2017 Reasoning Under Uncertainty

SLD Resolution — ¢, p

Selected literals Linear form Definite clauses resolution

SLD derivation of a clause C from a set of clauses KB is a sequence
of clauses such that

1. First clause of sequence comes from KB

2. Each intermediate clause C; 1s derived by resolving the previous
clause C;_ and a clause from KB

3. The last clause in the sequence is C

For set of Horn clauses KB: KB~ L if and only if KB t=g;p [

COMP4418 ©UNSW, 2017 Generated: 26 July 2017



COMP4418, Wednesday 9 August, 2017 Reasoning Under Uncertainty

Prolog

Horn clauses in first-order logic (facts and rules)
SLD resolution
Depth-first search strategy with backtracking

User control
Ordering of predicates in Prolog database (facts and rules)
Ordering of subgoals in body of a rule
Cut (!) operator
Negation as failure
That 1s, Prolog is a restricted form of first-order logic (Horn clauses)
and puts more control of the theorem proving process into the hands

of the programmer allowing them to use problem-specific knowledge
to reduce search

COMP4418 ©UNSW, 2017 Generated: 26 July 2017



COMP4418, Wednesday 9 August, 2017 Reasoning Under Uncertainty

Backward Chaining

(Brachman & Levesque) Show whether Horn knowledge base satisfiable
Goal driven

Start with hypothesis and work backwards using rules in knowledge
base to easily confirmed findings

Check satisfiabilty of set of Horn clauses:

prove(Q1 A ... ANQy) {
if n = 0 return yes % empty clause

for each R € KB do
if R=01 « G N...NGy, and prove(G|1 A... NG, A

Q2/\---/\Qn)

then return yes
return no }

Depth-first, left-right, backward chaining
Strategy applied by Prolog

COMP4418 ©UNSW, 2017 Generated: 26 July 2017



COMP4418, Wednesday 9 August, 2017 Reasoning Under Uncertainty

Forward Chaining

(Brachman & Levesque) Determine whether Horn knowledge base entails
query: KB = Q

Data driven

1. if Q marked solved then return yes
2.if G+~ G N...NG,, €KBand Gy,...,G,, marked solved
and G not marked solved

then mark G solved; goto 1

else return no

COMP4418 ©UNSW, 2017 Generated: 26 July 2017

10



COMP4418, Wednesday 9 August, 2017 Reasoning Under Uncertainty

Negation as Failure

Prolog does not implement classical negation
Prolog not 1s known as negation as failure

not(G) :- G, !, fail. % If G succeeds return no
not (G) . % else return yes

KB not(G) — cannot prove G
KB+ —~G — can prove -G
They are not the same

Negation as failure is finite failure

COMP4418 ©UNSW, 2017 Generated: 26 July 2017

11



COMP4418, Wednesday 9 August, 2017 Reasoning Under Uncertainty 12

Conclusion

First-order logic is an expressive formal language and allows for
powerful reasoning

Theorem proving is undecidable in general

Other options:

Search heuristics (ordering of predicates, subgoals; depth-first
search)

Sacrifice expressivity (e.g., Horn clauses although still undecid-
able in first-order case)

User control (cut operator)

Prolog 1s based on SLD resolution in first-order Horn logic and allows
programmer to use knowledge about domain to control search

Blend of theory and pragmatics

COMP4418 ©UNSW, 2017 Generated: 26 July 2017



