
COMP2111 Week 7
Term 1, 2019

Finite automata

1

Summary

Recap

Deterministic Finite Automata

Non-deterministic Finite Automata

Regular languages

Regular expressions

Mealy machines

2

Summary

Recap

Deterministic Finite Automata

Non-deterministic Finite Automata

Regular languages

Regular expressions

Mealy machines

3

Transition systems

A transition system (or state machine) is a pair (S ,→) where S
is a set and →⊆ S × S is a binary relation.

NB

S is not necessarily finite.

Transition systems may have:

Λ-labelled transitions: →⊆ S × Λ× S

A start/initial state s0 ∈ S

A set of final states F ⊆ S (where runs terminate)

If → is a function (from S × Λ to S) then the transition system is
deterministic. In general a transition system is
non-deterministic.

4

Abstraction

Transition systems model computational processes abstractly.

We are not concerned with:

the internal structure of states; or

the nature of the transition relation (i.e. why two states are
related)

5

Reachability and Runs

A state s ′ is reachable from a state s if (s, s ′) ∈→∗ (the transitive
closure of →).

A run from a state s is a sequence s1, s2, . . . such that s1 = s and
si → si+1 for all i .

NB

In a non-deterministic transition system there may be many
(including none) runs from a state. In an unlabelled deterministic
transition system there is exactly one run from every state.

6

Acceptors and Transducers

An acceptor is a transition system with:

(input-)labelled transitions

a start/initial state

a set of final states

A transducer is a transition system with:

(input & output-)labelled transitions

a start/initial state

NB

Acceptors accept/reject sequences of inputs. Transducers map
sequences of inputs to sequences of outputs.

7

Summary

Recap

Deterministic Finite Automata

Non-deterministic Finite Automata

Regular languages

Regular expressions

Mealy machines

8

Deterministic Finite Automata

q0 q1 q2

0

1

1

0

0,1

A deterministic finite automaton (DFA) is a deterministic, finite
state acceptor.

DFAs represent “computation with finite memory”

DFAs form the backbone of most computational models

9

Deterministic Finite Automata

q0 q1 q2

0

1

1

0

0,1

Formally, a deterministic finite automaton (DFA) is a tuple
(Q,Σ, δ, q0,F) where

Q is a finite set of states: Q = {q0, q1, q2}
Σ is the input alphabet: Σ = {0, 1}
δ : Q × Σ→ Q is the transition function

q0 ∈ Q is the start state

F ⊆ Q is the set of final/accepting states: F = {q1}

10

Deterministic Finite Automata

q0 q1 q2

0

1

1

0

0,1

Formally, a deterministic finite automaton (DFA) is a tuple
(Q,Σ, δ, q0,F) where

Q is a finite set of states: Q = {q0, q1, q2}
Σ is the input alphabet: Σ = {0, 1}
δ : Q × Σ→ Q is the transition function

q0 ∈ Q is the start state

F ⊆ Q is the set of final/accepting states: F = {q1}

11

Deterministic Finite Automata

q0 q1 q2

0

1

1

0

0,1

Formally, a deterministic finite automaton (DFA) is a tuple
(Q,Σ, δ, q0,F) where

Q is a finite set of states: Q = {q0, q1, q2}
Σ is the input alphabet: Σ = {0, 1}
δ : Q × Σ→ Q is the transition function

q0 ∈ Q is the start state

F ⊆ Q is the set of final/accepting states: F = {q1}

12

Deterministic Finite Automata

q0 q1 q2

0

1

1

0

0,1

δ(q0, 0) = q0
δ(q0, 1) = q1
δ(q1, 0) = q2
δ(q1, 1) = q1
δ(q2, 0) = q1
δ(q2, 1) = q1

13

Deterministic Finite Automata

q0 q1 q2

0

1

1

0

0,1

δ 0 1

q0 q0 q1
q1 q2 q1
q2 q1 q1

14

Deterministic Finite Automata

q0 q1 q2

0

1

1

0

0,1

Formally, a deterministic finite automaton (DFA) is a tuple
(Q,Σ, δ, q0,F) where

Q is a finite set of states: Q = {q0, q1, q2}
Σ is the input alphabet: Σ = {0, 1}
δ : Q × Σ→ Q is the transition function

q0 ∈ Q is the start state

F ⊆ Q is the set of final/accepting states: F = {q1}

15

Language of a DFA

q0 q1 q2

0

1

1

0

0,1

A DFA accepts a sequence of symbols from Σ – i.e. elements of Σ∗

Informally: A word defines a run in the DFA and the word is accepted
if the run ends in a final state.

16

Language of a DFA

q0 q1 q2

w : 1001

0

1

1

0

0,1

A DFA accepts a sequence of symbols from Σ – i.e. elements of Σ∗

Start in state q0

Take the first symbol of w

Repeat the following until there are no symbols left:

Based on the current state and current input symbol,
transition to the appropriate state determined by δ
Move to the next symbol in w

Accept if the process ends in a final state, otherwise reject.
17

Language of a DFA

q0 q1 q2

w : 1001

q0

0

1

1

0

0,1

A DFA accepts a sequence of symbols from Σ – i.e. elements of Σ∗

Start in state q0

Take the first symbol of w

Repeat the following until there are no symbols left:

Based on the current state and current input symbol,
transition to the appropriate state determined by δ
Move to the next symbol in w

Accept if the process ends in a final state, otherwise reject.
18

Language of a DFA

q0 q1 q2

w : 1001

q0

0

1

1

0

0,1

A DFA accepts a sequence of symbols from Σ – i.e. elements of Σ∗

Start in state q0

Take the first symbol of w

Repeat the following until there are no symbols left:

Based on the current state and current input symbol,
transition to the appropriate state determined by δ
Move to the next symbol in w

Accept if the process ends in a final state, otherwise reject.
19

Language of a DFA

q0 q1 q2

w : 1001

q0

0

1

1

0

0,1

A DFA accepts a sequence of symbols from Σ – i.e. elements of Σ∗

Start in state q0

Take the first symbol of w

Repeat the following until there are no symbols left:

Based on the current state and current input symbol,
transition to the appropriate state determined by δ
Move to the next symbol in w

Accept if the process ends in a final state, otherwise reject.
20

Language of a DFA

q0 q1 q2

w : 1001

q1

0

1

1

0

0,1

A DFA accepts a sequence of symbols from Σ – i.e. elements of Σ∗

Start in state q0

Take the first symbol of w

Repeat the following until there are no symbols left:

Based on the current state and current input symbol,
transition to the appropriate state determined by δ
Move to the next symbol in w

Accept if the process ends in a final state, otherwise reject.
21

Language of a DFA

q0 q1 q2

w : 1001

q1

0

1

1

0

0,1

A DFA accepts a sequence of symbols from Σ – i.e. elements of Σ∗

Start in state q0

Take the first symbol of w

Repeat the following until there are no symbols left:

Based on the current state and current input symbol,
transition to the appropriate state determined by δ
Move to the next symbol in w

Accept if the process ends in a final state, otherwise reject.
22

Language of a DFA

q0 q1 q2

w : 1001

q1

0

1

1

0

0,1

A DFA accepts a sequence of symbols from Σ – i.e. elements of Σ∗

Start in state q0

Take the first symbol of w

Repeat the following until there are no symbols left:

Based on the current state and current input symbol,
transition to the appropriate state determined by δ
Move to the next symbol in w

Accept if the process ends in a final state, otherwise reject.
23

Language of a DFA

q0 q1 q2

w : 1001

q2

0

1

1

0

0,1

A DFA accepts a sequence of symbols from Σ – i.e. elements of Σ∗

Start in state q0

Take the first symbol of w

Repeat the following until there are no symbols left:

Based on the current state and current input symbol,
transition to the appropriate state determined by δ
Move to the next symbol in w

Accept if the process ends in a final state, otherwise reject.
24

Language of a DFA

q0 q1 q2

w : 1001

q2

0

1

1

0

0,1

A DFA accepts a sequence of symbols from Σ – i.e. elements of Σ∗

Start in state q0

Take the first symbol of w

Repeat the following until there are no symbols left:

Based on the current state and current input symbol,
transition to the appropriate state determined by δ
Move to the next symbol in w

Accept if the process ends in a final state, otherwise reject.
25

Language of a DFA

q0 q1 q2

w : 1001

q1

0

1

1

0

0,1

A DFA accepts a sequence of symbols from Σ – i.e. elements of Σ∗

Start in state q0

Take the first symbol of w

Repeat the following until there are no symbols left:

Based on the current state and current input symbol,
transition to the appropriate state determined by δ
Move to the next symbol in w

Accept if the process ends in a final state, otherwise reject.
26

Language of a DFA

q0 q1 q2

w : 1001

q1

0

1

1

0

0,1

A DFA accepts a sequence of symbols from Σ – i.e. elements of Σ∗

Start in state q0

Take the first symbol of w

Repeat the following until there are no symbols left:

Based on the current state and current input symbol,
transition to the appropriate state determined by δ
Move to the next symbol in w

Accept if the process ends in a final state, otherwise reject.
27

Language of a DFA

q0 q1 q2

w : 1001

q1

0

1

1

0

0,1

A DFA accepts a sequence of symbols from Σ – i.e. elements of Σ∗

Start in state q0

Take the first symbol of w

Repeat the following until there are no symbols left:

Based on the current state and current input symbol,
transition to the appropriate state determined by δ
Move to the next symbol in w

Accept if the process ends in a final state, otherwise reject.
28

Language of a DFA

q0 q1 q2

w : 1001

q1

0

1

1

0

0,1

A DFA accepts a sequence of symbols from Σ – i.e. elements of Σ∗

Start in state q0

Take the first symbol of w

Repeat the following until there are no symbols left:

Based on the current state and current input symbol,
transition to the appropriate state determined by δ
Move to the next symbol in w

Accept if the process ends in a final state, otherwise reject.
29

Language of a DFA

q0 q1 q2

w : 1001 X

q1

0

1

1

0

0,1

A DFA accepts a sequence of symbols from Σ – i.e. elements of Σ∗

Start in state q0

Take the first symbol of w

Repeat the following until there are no symbols left:

Based on the current state and current input symbol,
transition to the appropriate state determined by δ
Move to the next symbol in w

Accept if the process ends in a final state, otherwise reject.
30

Language of a DFA

q0 q1 q2

0

1

1

0

0,1

For a DFA A = (Q,Σ, δ, q0,F), the language of A, L(A), is the
set of words from Σ∗ which are accepted by A

A language L ⊆ Σ∗ is regular if there is some DFA A such that
L = L(A)

31

Language of a DFA

q0 q1 q2

L(A) = {1, 01, 11, 101, . . .}

0

1

1

0

0,1

For a DFA A = (Q,Σ, δ, q0,F), the language of A, L(A), is the
set of words from Σ∗ which are accepted by A

A language L ⊆ Σ∗ is regular if there is some DFA A such that
L = L(A)

32

Language of a DFA

q0 q1 q2

L(A) = {1, 01, 11, 101, . . .}

0

1

1

0

0,1

For a DFA A = (Q,Σ, δ, q0,F), the language of A, L(A), is the
set of words from Σ∗ which are accepted by A

A language L ⊆ Σ∗ is regular if there is some DFA A such that
L = L(A)

33

Language of a DFA: formally

Given a DFA A = (Q,Σ, δ, q0,F) we define LA : Q → Σ∗

inductively as follows:

If q ∈ F then λ ∈ LA(q)

If q
a−→ q′ and w ∈ LA(q′) then aw ∈ LA(q)

We then define
L(A) = LA(q0)

34

Language of a DFA: formally

Given a DFA A = (Q,Σ, δ, q0,F) we define LA : Q → Σ∗

inductively as follows:

If q ∈ F then λ ∈ LA(q)

If q
a−→ q′ and w ∈ LA(q′) then aw ∈ LA(q)

We then define
L(A) = LA(q0)

35

Examples

Example

A1

q0 q1

a

b

b

a

L(A1) = ?

36

Examples

Example

A1

q0 q1

a

b

b

a

L(A1) = {w ∈ {a, b}∗ : w ends with b}

37

Examples

Example

A2

q0 q1

a

b

b

a

L(A2) = ?

38

Examples

Example

A2

q0 q1

a

b

b

a

L(A2) = {w ∈ {a, b}∗ : w ends with a} ∪ {λ}

39

Examples

Example

Find A3 such that L(A3) = ∅

A3

q0

a, b

Find A4 such that L(A4) = {λ}

A4

q0 q1
a, b

a, b

40

Examples

Example

Find A3 such that L(A3) = ∅

A3

q0

a, b

Find A4 such that L(A4) = {λ}

A4

q0 q1
a, b

a, b

41

Examples

Example

Find A3 such that L(A3) = ∅

A3

q0

a, b

Find A4 such that L(A4) = {λ}

A4

q0 q1
a, b

a, b

42

Examples

Example

Find A5 such that L(A5) = {w ∈ {a, b}∗ : every odd symbol is b}

A5

q0 q1

q2

b

a, b
a

a, b

43

Examples

Example

Find A5 such that L(A5) = {w ∈ {a, b}∗ : every odd symbol is b}

A5

q0 q1

q2

b

a, b
a

a, b

44

Examples

Example

Find A6 such that
L(A6) = {w ∈ {a, b}∗ : second-last symbol is b}

A5

xx xB

BA BB

a

b

b
a

b
a

a b

45

Examples

Example

Find A6 such that
L(A6) = {w ∈ {a, b}∗ : second-last symbol is b}

A5

xx xB

BA BB

a

b

b
a

b
a

a b

46

Examples

Example

Find A6 such that
L(A6) = {w ∈ {a, b}∗ : second-last symbol is b}

A5

xx xB

BA BB

a

b

b
a

b
a

a b

47

Summary

Recap

Deterministic Finite Automata

Non-deterministic Finite Automata

Regular languages

Regular expressions

Mealy machines

48

Non-deterministic Finite Automata

q0 q1 q2

0,1

1

1

0,ε

0

A non-deterministic finite automaton (NFA) is a non-
deterministic, finite state acceptor.

More general than DFAs: A DFA is an NFA

49

Non-deterministic Finite Automata

q0 q1 q2

0,1

1

1

0,ε

0

Formally, a non-deterministic finite automaton (NFA) is a tuple
(Q,Σ, δ, q0,F) where

Q is a finite set of states: Q = {q0, q1, q2}
Σ is the input alphabet: Σ = {0, 1}
δ ⊆ Q × (Σ ∪ {ε})× Q is the transition relation

q0 ∈ Q is the start state

F ⊆ Q is the set of final/accepting states: F = {q1}

50

Non-deterministic Finite Automata

q0 q1 q2

0,1

1

1

0,ε

0

Formally, a non-deterministic finite automaton (NFA) is a tuple
(Q,Σ, δ, q0,F) where

Q is a finite set of states: Q = {q0, q1, q2}
Σ is the input alphabet: Σ = {0, 1}
δ ⊆ Q × (Σ ∪ {ε})× Q is the transition relation

q0 ∈ Q is the start state

F ⊆ Q is the set of final/accepting states: F = {q1}

51

Non-deterministic Finite Automata

q0 q1 q2

0,1

1

1

0,ε

0

Formally, a non-deterministic finite automaton (NFA) is a tuple
(Q,Σ, δ, q0,F) where

Q is a finite set of states: Q = {q0, q1, q2}
Σ is the input alphabet: Σ = {0, 1}
δ ⊆ Q × (Σ ∪ {ε})× Q is the transition relation

q0 ∈ Q is the start state

F ⊆ Q is the set of final/accepting states: F = {q1}

52

Non-deterministic Finite Automata

q0 q1 q2

0,1

1

1

0,ε

0

δ =


(q0, 0, q0), (q0, 1, q0), (q0, 1, q1),
(q1, ε, q2), (q1, 0, q2), (q1, 1, q1),

(q2, 0, q1)



53

Non-deterministic Finite Automata

q0 q1 q2

0,1

1

1

0,ε

0

δ ε 0 1

q0 ∅ {q0} {q0, q1}
q1 {q2} {q2} {q1}
q2 ∅ {q1} ∅

54

Non-deterministic Finite Automata

q0 q1 q2

0,1

1

1

0,ε

0

Formally, a non-deterministic finite automaton (NFA) is a tuple
(Q,Σ, δ, q0,F) where

Q is a finite set of states: Q = {q0, q1, q2}
Σ is the input alphabet: Σ = {0, 1}
δ ⊆ Q × (Σ ∪ {ε})× Q is the transition relation

q0 ∈ Q is the start state

F ⊆ Q is the set of final/accepting states: F = {q1}

55

Language of an NFA

q0 q1 q2

0,1

1

1

0,ε

0

An NFA accepts a sequence of symbols from Σ – i.e. elements of Σ∗

Informally: A word defines several runs in the NFA and the word is accepted
if at least one run ends in a final state.

Note 1: Runs can end prematurely (these don’t count)

Note 2: An NFA will always “choose wisely”

56

Language of an NFA

q0 q1 q2

w : 1000

0,1

1

1

0,ε

0

Start in state q0

Take the first symbol of w

Repeat until there are no symbols left or no transitions available:

Based on the current state and current input symbol or ε,
transition to any state determined by δ
If not an ε-transition, move to the next symbol in w

Accept if there are no symbols left and the process ends in a final
state, otherwise reject.

57

Language of an NFA

q0 q1 q2

w : 1000

q0

0,1

1

1

0,ε

0

Start in state q0

Take the first symbol of w

Repeat until there are no symbols left or no transitions available:

Based on the current state and current input symbol or ε,
transition to any state determined by δ
If not an ε-transition, move to the next symbol in w

Accept if there are no symbols left and the process ends in a final
state, otherwise reject.

58

Language of an NFA

q0 q1 q2

w : 1000

q0

0,1

1

1

0,ε

0

Start in state q0

Take the first symbol of w

Repeat until there are no symbols left or no transitions available:

Based on the current state and current input symbol or ε,
transition to any state determined by δ
If not an ε-transition, move to the next symbol in w

Accept if there are no symbols left and the process ends in a final
state, otherwise reject.

59

Language of an NFA

q0 q1 q2

w : 1000

q0

0,1

1

1

0,ε

0

Start in state q0

Take the first symbol of w

Repeat until there are no symbols left or no transitions available:

Based on the current state and current input symbol or ε,
transition to any state determined by δ
If not an ε-transition, move to the next symbol in w

Accept if there are no symbols left and the process ends in a final
state, otherwise reject.

60

Language of an NFA

q0 q1 q2

w : 1000

q1

0,1

1

1

0,ε

0

Start in state q0

Take the first symbol of w

Repeat until there are no symbols left or no transitions available:

Based on the current state and current input symbol or ε,
transition to any state determined by δ
If not an ε-transition, move to the next symbol in w

Accept if there are no symbols left and the process ends in a final
state, otherwise reject.

61

Language of an NFA

q0 q1 q2

w : 1000

q1

0,1

1

1

0,ε

0

Start in state q0

Take the first symbol of w

Repeat until there are no symbols left or no transitions available:

Based on the current state and current input symbol or ε,
transition to any state determined by δ
If not an ε-transition, move to the next symbol in w

Accept if there are no symbols left and the process ends in a final
state, otherwise reject.

62

Language of an NFA

q0 q1 q2

w : 1000

q1

0,1

1

1

0,ε

0

Start in state q0

Take the first symbol of w

Repeat until there are no symbols left or no transitions available:

Based on the current state and current input symbol or ε,
transition to any state determined by δ
If not an ε-transition, move to the next symbol in w

Accept if there are no symbols left and the process ends in a final
state, otherwise reject.

63

Language of an NFA

q0 q1 q2

w : 1000

q2

0,1

1

1

0,ε

0

Start in state q0

Take the first symbol of w

Repeat until there are no symbols left or no transitions available:

Based on the current state and current input symbol or ε,
transition to any state determined by δ
If not an ε-transition, move to the next symbol in w

Accept if there are no symbols left and the process ends in a final
state, otherwise reject.

64

Language of an NFA

q0 q1 q2

w : 1000

q2

0,1

1

1

0,ε

0

Start in state q0

Take the first symbol of w

Repeat until there are no symbols left or no transitions available:

Based on the current state and current input symbol or ε,
transition to any state determined by δ
If not an ε-transition, move to the next symbol in w

Accept if there are no symbols left and the process ends in a final
state, otherwise reject.

65

Language of an NFA

q0 q1 q2

w : 1000

q1

0,1

1

1

0,ε

0

Start in state q0

Take the first symbol of w

Repeat until there are no symbols left or no transitions available:

Based on the current state and current input symbol or ε,
transition to any state determined by δ
If not an ε-transition, move to the next symbol in w

Accept if there are no symbols left and the process ends in a final
state, otherwise reject.

66

Language of an NFA

q0 q1 q2

w : 1000

q1

0,1

1

1

0,ε

0

Start in state q0

Take the first symbol of w

Repeat until there are no symbols left or no transitions available:

Based on the current state and current input symbol or ε,
transition to any state determined by δ
If not an ε-transition, move to the next symbol in w

Accept if there are no symbols left and the process ends in a final
state, otherwise reject.

67

Language of an NFA

q0 q1 q2

w : 1000

q2

0,1

1

1

0,ε

0

Start in state q0

Take the first symbol of w

Repeat until there are no symbols left or no transitions available:

Based on the current state and current input symbol or ε,
transition to any state determined by δ
If not an ε-transition, move to the next symbol in w

Accept if there are no symbols left and the process ends in a final
state, otherwise reject.

68

Language of an NFA

q0 q1 q2

w : 1000

q2

0,1

1

1

0,ε

0

Start in state q0

Take the first symbol of w

Repeat until there are no symbols left or no transitions available:

Based on the current state and current input symbol or ε,
transition to any state determined by δ
If not an ε-transition, move to the next symbol in w

Accept if there are no symbols left and the process ends in a final
state, otherwise reject.

69

Language of an NFA

q0 q1 q2

w : 1000

q1

0,1

1

1

0,ε

0

Start in state q0

Take the first symbol of w

Repeat until there are no symbols left or no transitions available:

Based on the current state and current input symbol or ε,
transition to any state determined by δ
If not an ε-transition, move to the next symbol in w

Accept if there are no symbols left and the process ends in a final
state, otherwise reject.

70

Language of an NFA

q0 q1 q2

w : 1000

q1

0,1

1

1

0,ε

0

Start in state q0

Take the first symbol of w

Repeat until there are no symbols left or no transitions available:

Based on the current state and current input symbol or ε,
transition to any state determined by δ
If not an ε-transition, move to the next symbol in w

Accept if there are no symbols left and the process ends in a final
state, otherwise reject.

71

Language of an NFA

q0 q1 q2

w : 1000 X

q1

0,1

1

1

0,ε

0

Start in state q0

Take the first symbol of w

Repeat until there are no symbols left or no transitions available:

Based on the current state and current input symbol or ε,
transition to any state determined by δ
If not an ε-transition, move to the next symbol in w

Accept if there are no symbols left and the process ends in a final
state, otherwise reject.

72

Language of an NFA

q0 q1 q2

0,1

1

1

0,ε

0

For an NFA A = (Q,Σ, δ, q0,F), the language of A, L(A), is the
set of words from Σ∗ which are accepted by A

73

Language of an NFA

q0 q1 q2

L(A) = {1, 01, 11, 10, . . .}

0,1

1

1

0,ε

0

For an NFA A = (Q,Σ, δ, q0,F), the language of A, L(A), is the
set of words from Σ∗ which are accepted by A

74

Language of an NFA: formally

Given an NFA A = (Q,Σ, δ, q0,F) we define LA : Q → Σ∗

inductively as follows:

If q ∈ F then λ ∈ LA(q)

If q
a−→ q′ and w ∈ LA(q′) then aw ∈ LA(q)

If q
ε−→ q′ and w ∈ LA(q′) then w ∈ LA(q)

We then define
L(A) = LA(q0)

75

Language of an NFA: formally

Given an NFA A = (Q,Σ, δ, q0,F) we define LA : Q → Σ∗

inductively as follows:

If q ∈ F then λ ∈ LA(q)

If q
a−→ q′ and w ∈ LA(q′) then aw ∈ LA(q)

If q
ε−→ q′ and w ∈ LA(q′) then w ∈ LA(q)

We then define
L(A) = LA(q0)

76

Examples

Example

B1

q0 q1

a, b

b

L(B1) = ?

77

Examples

Example

B1

q0 q1

a, b

b

L(B1) = {w ∈ {a, b}∗ : w ends with b}

78

Examples

Example

B2

q0 q1

a, b

b

L(B2) = ?

79

Examples

Example

B2

q0 q1

a, b

b

L(B2) = {a, b}∗

80

Examples

Example

Find B3 such that L(B3) = ∅

B3

q0

Find B4 such that L(B4) = {λ}

B4

q0

81

Examples

Example

Find B3 such that L(B3) = ∅

B3

q0

Find B4 such that L(B4) = {λ}

B4

q0

82

Examples

Example

Find B3 such that L(B3) = ∅

B3

q0

Find B4 such that L(B4) = {λ}

B4

q0

83

Examples

Example

Find B5 such that L(B5) = {w ∈ {a, b}∗ : second-last symbol is b}

B5

q0 q1 q2

a, b

b a, b

84

Examples

Example

Find B5 such that L(B5) = {w ∈ {a, b}∗ : second-last symbol is b}

B5

q0 q1 q2

a, b

b a, b

85

NFAs vs DFAs

Clearly for any DFA A there is an NFA B such that L(A) = L(B).

Theorem

For any NFA B there is a DFA A such that L(A) = L(B).

Proof sketch: (Subset construction)
Given B = (Q,Σ, δ, q0,F), construct A = (Q ′,Σ, δ′, q′0,F

′) as
follows:

Q ′ = Pow(Q)

δ′(X , a) = {q′ ∈ Q : ∃q ∈ X , q′′ ∈ Q.q
a−→ q′′

ε−→
∗
q′}

q′0 = {q0}
F ′ = {X ∈ Q ′ : X ∩ F 6= ∅}

Intuitively: A keeps track of all the possible states B could be in
after seeing a given sequence of symbols.

86

NFAs vs DFAs

Clearly for any DFA A there is an NFA B such that L(A) = L(B).

Theorem

For any NFA B there is a DFA A such that L(A) = L(B).

Proof sketch: (Subset construction)
Given B = (Q,Σ, δ, q0,F), construct A = (Q ′,Σ, δ′, q′0,F

′) as
follows:

Q ′ = Pow(Q)

δ′(X , a) = {q′ ∈ Q : ∃q ∈ X , q′′ ∈ Q.q
a−→ q′′

ε−→
∗
q′}

q′0 = {q0}
F ′ = {X ∈ Q ′ : X ∩ F 6= ∅}

Intuitively: A keeps track of all the possible states B could be in
after seeing a given sequence of symbols.

87

NFAs vs DFAs

Clearly for any DFA A there is an NFA B such that L(A) = L(B).

Theorem

For any NFA B there is a DFA A such that L(A) = L(B).

Proof sketch: (Subset construction)
Given B = (Q,Σ, δ, q0,F), construct A = (Q ′,Σ, δ′, q′0,F

′) as
follows:

Q ′ = Pow(Q)

δ′(X , a) = {q′ ∈ Q : ∃q ∈ X , q′′ ∈ Q.q
a−→ q′′

ε−→
∗
q′}

q′0 = {q0}
F ′ = {X ∈ Q ′ : X ∩ F 6= ∅}

Intuitively: A keeps track of all the possible states B could be in
after seeing a given sequence of symbols.

88

NFA to DFA Example
Example

B5

q0 q1 q2

a, b

b a, b

δ′ a b
∅ ∅ ∅
{q0} {q0} {q0, q1}
{q1} {q2} {q2}
{q2} ∅ ∅
{q0, q1} {q0, q2} {q0, q1, q2}
{q0, q2} {q0} {q0, q1}
{q1, q2} {q2} {q2}
{q0, q1, q2} {q0, q2} {q0, q1, q2}

89

NFA to DFA Example
Example

B5

q0 q1 q2

a, b

b a, b

δ′ a b
∅ ∅ ∅
{q0} {q0} {q0, q1}
{q1} {q2} {q2}
{q2} ∅ ∅
{q0, q1} {q0, q2} {q0, q1, q2}
{q0, q2} {q0} {q0, q1}
{q1, q2} {q2} {q2}
{q0, q1, q2} {q0, q2} {q0, q1, q2}

90

NFA to DFA Example
Example

B5

q0 q1 q2

a, b

b a, b

δ′ a b
∅ ∅ ∅
{q0} {q0} {q0, q1}
{q1} {q2} {q2}
{q2} ∅ ∅
{q0, q1} {q0, q2} {q0, q1, q2}
{q0, q2} {q0} {q0, q1}
{q1, q2} {q2} {q2}
{q0, q1, q2} {q0, q2} {q0, q1, q2}

91

NFA to DFA Example
Example

B5

q0 q1 q2

a, b

b a, b

δ′ a b
∅ ∅ ∅
{q0} {q0} {q0, q1}
{q1} {q2} {q2}
{q2} ∅ ∅
{q0, q1} {q0, q2} {q0, q1, q2}
{q0, q2} {q0} {q0, q1}
{q1, q2} {q2} {q2}
{q0, q1, q2} {q0, q2} {q0, q1, q2}

92

NFA to DFA Example
Example

B5

q0 q1 q2

a, b

b a, b

δ′ a b
∅ ∅ ∅
{q0} {q0} {q0, q1}
{q1} {q2} {q2}
{q2} ∅ ∅
{q0, q1} {q0, q2} {q0, q1, q2}
{q0, q2} {q0} {q0, q1}
{q1, q2} {q2} {q2}
{q0, q1, q2} {q0, q2} {q0, q1, q2}

93

NFA to DFA Example
Example

B5

q0 q1 q2

a, b

b a, b

δ′ a b
∅ ∅ ∅
{q0} {q0} {q0, q1}
{q1} {q2} {q2}
{q2} ∅ ∅
{q0, q1} {q0, q2} {q0, q1, q2}
{q0, q2} {q0} {q0, q1}
{q1, q2} {q2} {q2}
{q0, q1, q2} {q0, q2} {q0, q1, q2}

94

NFA to DFA Example
Example

B5

q0 q1 q2

a, b

b a, b

δ′ a b
∅ ∅ ∅
{q0} {q0} {q0, q1}
{q1} {q2} {q2}
{q2} ∅ ∅
{q0, q1} {q0, q2} {q0, q1, q2}
{q0, q2} {q0} {q0, q1}
{q1, q2} {q2} {q2}
{q0, q1, q2} {q0, q2} {q0, q1, q2}

95

NFA to DFA Example
Example

B5

q0 q1 q2

a, b

b a, b

δ′ a b
∅ ∅ ∅
{q0} {q0} {q0, q1}
{q1} {q2} {q2}
{q2} ∅ ∅
{q0, q1} {q0, q2} {q0, q1, q2}
{q0, q2} {q0} {q0, q1}
{q1, q2} {q2} {q2}
{q0, q1, q2} {q0, q2} {q0, q1, q2}

96

NFA to DFA Example
Example

B5

q0 q1 q2

a, b

b a, b

δ′ a b
∅ ∅ ∅
{q0} {q0} {q0, q1}
{q1} {q2} {q2}
{q2} ∅ ∅
{q0, q1} {q0, q2} {q0, q1, q2}
{q0, q2} {q0} {q0, q1}
{q1, q2} {q2} {q2}
{q0, q1, q2} {q0, q2} {q0, q1, q2}

97

NFA to DFA Example
Example

B5

q0 q1 q2

a, b

b a, b

δ′ a b
∅ ∅ ∅
{q0} {q0} {q0, q1}
{q1} {q2} {q2}
{q2} ∅ ∅
{q0, q1} {q0, q2} {q0, q1, q2}
{q0, q2} {q0} {q0, q1}
{q1, q2} {q2} {q2}
{q0, q1, q2} {q0, q2} {q0, q1, q2}

98

NFA to DFA Example
Example

B5

q0 q1 q2

a, b

b a, b

δ′ a b
∅ A A A
{q0} B B E
{q1} C D D
{q2} D A A
{q0, q1} E F H
{q0, q2} F B E
{q1, q2} G D D
{q0, q1, q2} H F H

99

NFA to DFA Example
Example

B5

q0 q1 q2

a, b

b a, b

δ′ a b
∅ A A A
{q0} B B E
{q1} C D D
{q2} D A A
{q0, q1} E F H
{q0, q2} F B E
{q1, q2} G D D
{q0, q1, q2} H F H

100

NFA to DFA Example
Example

B5

q0 q1 q2

a, b

b a, b

δ′ a b
∅ A A A
{q0} B B E
{q1} C D D
{q2} D A A
{q0, q1} E F H
{q0, q2} F B E
{q1, q2} G D D
{q0, q1, q2} H F H

101

NFA to DFA Example
Example

B5

q0 q1 q2

a, b

b a, b

B E

F H

G

C

D

A

a

b

b
a

b
a

a b

a, b

a, b
a, b

a, b

102

NFAs vs DFAs

Theorem

For any NFA with n states there exists a DFA with at most 2n

states that accepts the same language

There exist NFAs with n states such that the smallest DFA
that accepts the same language has at least 2n states.

103

Summary

Recap

Deterministic Finite Automata

Non-deterministic Finite Automata

Regular languages

Regular expressions

Mealy machines

104

Regular languages

A language L ⊆ Σ∗ is regular if there is some DFA A such that
L = L(A)

Equivalently, there is some NFA B such that L = L(B)

105

Regular languages

A language L ⊆ Σ∗ is regular if there is some DFA A such that
L = L(A)

Equivalently, there is some NFA B such that L = L(B)

106

Non-regular languages

Are there languages which are not regular? Yes

“Simple” counting argument: there are uncountably many
languages, and only countably many DFAs

An example of a non-regular language: {0n1n : n ∈ N}
Intuitively: need arbitrary large memory to “remember” the
number of 0’s

107

Non-regular languages

Are there languages which are not regular? Yes

“Simple” counting argument: there are uncountably many
languages, and only countably many DFAs

An example of a non-regular language: {0n1n : n ∈ N}
Intuitively: need arbitrary large memory to “remember” the
number of 0’s

108

Non-regular languages

Are there languages which are not regular? Yes

“Simple” counting argument: there are uncountably many
languages, and only countably many DFAs

An example of a non-regular language: {0n1n : n ∈ N}
Intuitively: need arbitrary large memory to “remember” the
number of 0’s

109

Complementation

Theorem

If L is a regular language then Lc = Σ∗ \ L is a regular language.

Proof:

Let A = (Q,Σ, δ, q0,F) be a DFA such that L(A) = L

Consider A′ = (Q,Σ, δ, q0,Q \ F)

For any word w ∈ Σ∗, the corresponding run in A is unique,
so:

If w ∈ L(A) then w /∈ L(A′), and
If w /∈ L(A) then w ∈ L(A′),

Therefore L(A′) = Σ∗ \ L(A) = Lc

NB

This argument does not apply for NFAs (see B1 and B2)

110

Complementation

Theorem

If L is a regular language then Lc = Σ∗ \ L is a regular language.

Proof:

Let A = (Q,Σ, δ, q0,F) be a DFA such that L(A) = L

Consider A′ = (Q,Σ, δ, q0,Q \ F)

For any word w ∈ Σ∗, the corresponding run in A is unique,
so:

If w ∈ L(A) then w /∈ L(A′), and
If w /∈ L(A) then w ∈ L(A′),

Therefore L(A′) = Σ∗ \ L(A) = Lc

NB

This argument does not apply for NFAs (see B1 and B2)

111

Complementation

Theorem

If L is a regular language then Lc = Σ∗ \ L is a regular language.

Proof:

Let A = (Q,Σ, δ, q0,F) be a DFA such that L(A) = L

Consider A′ = (Q,Σ, δ, q0,Q \ F)

For any word w ∈ Σ∗, the corresponding run in A is unique,
so:

If w ∈ L(A) then w /∈ L(A′), and
If w /∈ L(A) then w ∈ L(A′),

Therefore L(A′) = Σ∗ \ L(A) = Lc

NB

This argument does not apply for NFAs (see B1 and B2)

112

Complementation

Theorem

If L is a regular language then Lc = Σ∗ \ L is a regular language.

Proof:

Let A = (Q,Σ, δ, q0,F) be a DFA such that L(A) = L

Consider A′ = (Q,Σ, δ, q0,Q \ F)

For any word w ∈ Σ∗, the corresponding run in A is unique,
so:

If w ∈ L(A) then w /∈ L(A′), and
If w /∈ L(A) then w ∈ L(A′),

Therefore L(A′) = Σ∗ \ L(A) = Lc

NB

This argument does not apply for NFAs (see B1 and B2)

113

Complementation

Theorem

If L is a regular language then Lc = Σ∗ \ L is a regular language.

Proof:

Let A = (Q,Σ, δ, q0,F) be a DFA such that L(A) = L

Consider A′ = (Q,Σ, δ, q0,Q \ F)

For any word w ∈ Σ∗, the corresponding run in A is unique,
so:

If w ∈ L(A) then w /∈ L(A′), and
If w /∈ L(A) then w ∈ L(A′),

Therefore L(A′) = Σ∗ \ L(A) = Lc

NB

This argument does not apply for NFAs (see B1 and B2)

114

Complementation

Theorem

If L is a regular language then Lc = Σ∗ \ L is a regular language.

Proof:

Let A = (Q,Σ, δ, q0,F) be a DFA such that L(A) = L

Consider A′ = (Q,Σ, δ, q0,Q \ F)

For any word w ∈ Σ∗, the corresponding run in A is unique,
so:

If w ∈ L(A) then w /∈ L(A′), and
If w /∈ L(A) then w ∈ L(A′),

Therefore L(A′) = Σ∗ \ L(A) = Lc

NB

This argument does not apply for NFAs (see B1 and B2)

115

Union

Theorem

If L1 and L2 are regular languages, then L1 ∪ L2 is regular.

Proof:

Let B1 and B2 be NFAs such that L(B1) = L1 and L(B2) = L2

Construct an NFA B by having a new start state with
ε-transitions to the start states of B1 and B2
Consider w ∈ L1 ∪ L2:

If w ∈ L1 then there is a run in B1, and hence in B, which
ends in a final state
If w ∈ L2 then there is a run in B2, and hence in B, which
ends in a final state
In either case w ∈ L(B)

Conversely, any accepting run in B will be either an accepting
run in B1 or in B2; so if w ∈ L(B) then w ∈ L1 ∪ L2

116

Union

Theorem

If L1 and L2 are regular languages, then L1 ∪ L2 is regular.

Proof:

Let B1 and B2 be NFAs such that L(B1) = L1 and L(B2) = L2

Construct an NFA B by having a new start state with
ε-transitions to the start states of B1 and B2
Consider w ∈ L1 ∪ L2:

If w ∈ L1 then there is a run in B1, and hence in B, which
ends in a final state
If w ∈ L2 then there is a run in B2, and hence in B, which
ends in a final state
In either case w ∈ L(B)

Conversely, any accepting run in B will be either an accepting
run in B1 or in B2; so if w ∈ L(B) then w ∈ L1 ∪ L2

117

Union

Theorem

If L1 and L2 are regular languages, then L1 ∪ L2 is regular.

Proof:

Let B1 and B2 be NFAs such that L(B1) = L1 and L(B2) = L2

Construct an NFA B by having a new start state with
ε-transitions to the start states of B1 and B2
Consider w ∈ L1 ∪ L2:

If w ∈ L1 then there is a run in B1, and hence in B, which
ends in a final state
If w ∈ L2 then there is a run in B2, and hence in B, which
ends in a final state
In either case w ∈ L(B)

Conversely, any accepting run in B will be either an accepting
run in B1 or in B2; so if w ∈ L(B) then w ∈ L1 ∪ L2

118

Union

Theorem

If L1 and L2 are regular languages, then L1 ∪ L2 is regular.

Proof:

Let B1 and B2 be NFAs such that L(B1) = L1 and L(B2) = L2

Construct an NFA B by having a new start state with
ε-transitions to the start states of B1 and B2
Consider w ∈ L1 ∪ L2:

If w ∈ L1 then there is a run in B1, and hence in B, which
ends in a final state
If w ∈ L2 then there is a run in B2, and hence in B, which
ends in a final state
In either case w ∈ L(B)

Conversely, any accepting run in B will be either an accepting
run in B1 or in B2; so if w ∈ L(B) then w ∈ L1 ∪ L2

119

Union

Theorem

If L1 and L2 are regular languages, then L1 ∪ L2 is regular.

Proof:

Let B1 and B2 be NFAs such that L(B1) = L1 and L(B2) = L2

Construct an NFA B by having a new start state with
ε-transitions to the start states of B1 and B2
Consider w ∈ L1 ∪ L2:

If w ∈ L1 then there is a run in B1, and hence in B, which
ends in a final state
If w ∈ L2 then there is a run in B2, and hence in B, which
ends in a final state
In either case w ∈ L(B)

Conversely, any accepting run in B will be either an accepting
run in B1 or in B2; so if w ∈ L(B) then w ∈ L1 ∪ L2

120

Intersection

Theorem

If L1 and L2 are regular languages, then L1 ∩ L2 is regular.

Proof:
L1 ∩ L2 = (Lc1 ∪ Lc2)c

121

Intersection

Theorem

If L1 and L2 are regular languages, then L1 ∩ L2 is regular.

Proof:
L1 ∩ L2 = (Lc1 ∪ Lc2)c

122

Concatenation
Recall for languages X and Y : X · Y = {xy : x ∈ X , y ∈ Y }

Theorem

If L1 and L2 are regular languages, then L1 · L2 is regular.

Proof:

Let B1 and B2 be NFAs such that L(B1) = L1 and L(B2) = L2
Construct an NFA B by adding ε-transitions from the final
states of B1 to the start state of B2. Let the start state of B
be the start state of B1; and let the final states of B be the
final states of B2.
Any word in L1 · L2 can be written as wv with w ∈ L1 and
v ∈ L2. w has an accepting run in B1 and v has an accepting
run in B2, so wv has an accepting run in B.
Conversely, any word w with an accepting run in B can be
broken up into an accepting run in B1 followed by an
accepting run in B2. Thus w can be broken up into two words
w = xy where x ∈ L1 and y ∈ L2.123

Concatenation
Recall for languages X and Y : X · Y = {xy : x ∈ X , y ∈ Y }

Theorem

If L1 and L2 are regular languages, then L1 · L2 is regular.

Proof:

Let B1 and B2 be NFAs such that L(B1) = L1 and L(B2) = L2
Construct an NFA B by adding ε-transitions from the final
states of B1 to the start state of B2. Let the start state of B
be the start state of B1; and let the final states of B be the
final states of B2.
Any word in L1 · L2 can be written as wv with w ∈ L1 and
v ∈ L2. w has an accepting run in B1 and v has an accepting
run in B2, so wv has an accepting run in B.
Conversely, any word w with an accepting run in B can be
broken up into an accepting run in B1 followed by an
accepting run in B2. Thus w can be broken up into two words
w = xy where x ∈ L1 and y ∈ L2.124

Concatenation
Recall for languages X and Y : X · Y = {xy : x ∈ X , y ∈ Y }

Theorem

If L1 and L2 are regular languages, then L1 · L2 is regular.

Proof:

Let B1 and B2 be NFAs such that L(B1) = L1 and L(B2) = L2
Construct an NFA B by adding ε-transitions from the final
states of B1 to the start state of B2. Let the start state of B
be the start state of B1; and let the final states of B be the
final states of B2.
Any word in L1 · L2 can be written as wv with w ∈ L1 and
v ∈ L2. w has an accepting run in B1 and v has an accepting
run in B2, so wv has an accepting run in B.
Conversely, any word w with an accepting run in B can be
broken up into an accepting run in B1 followed by an
accepting run in B2. Thus w can be broken up into two words
w = xy where x ∈ L1 and y ∈ L2.125

Concatenation
Recall for languages X and Y : X · Y = {xy : x ∈ X , y ∈ Y }

Theorem

If L1 and L2 are regular languages, then L1 · L2 is regular.

Proof:

Let B1 and B2 be NFAs such that L(B1) = L1 and L(B2) = L2
Construct an NFA B by adding ε-transitions from the final
states of B1 to the start state of B2. Let the start state of B
be the start state of B1; and let the final states of B be the
final states of B2.
Any word in L1 · L2 can be written as wv with w ∈ L1 and
v ∈ L2. w has an accepting run in B1 and v has an accepting
run in B2, so wv has an accepting run in B.
Conversely, any word w with an accepting run in B can be
broken up into an accepting run in B1 followed by an
accepting run in B2. Thus w can be broken up into two words
w = xy where x ∈ L1 and y ∈ L2.126

Concatenation
Recall for languages X and Y : X · Y = {xy : x ∈ X , y ∈ Y }

Theorem

If L1 and L2 are regular languages, then L1 · L2 is regular.

Proof:

Let B1 and B2 be NFAs such that L(B1) = L1 and L(B2) = L2
Construct an NFA B by adding ε-transitions from the final
states of B1 to the start state of B2. Let the start state of B
be the start state of B1; and let the final states of B be the
final states of B2.
Any word in L1 · L2 can be written as wv with w ∈ L1 and
v ∈ L2. w has an accepting run in B1 and v has an accepting
run in B2, so wv has an accepting run in B.
Conversely, any word w with an accepting run in B can be
broken up into an accepting run in B1 followed by an
accepting run in B2. Thus w can be broken up into two words
w = xy where x ∈ L1 and y ∈ L2.127

Kleene star

Recall for a language X :
X ∗ = {w : w can be made up from 0 or more words in X}

Theorem

If L is regular languages, then L∗ is regular.

Proof:

Let B be an NFA such that L(B) = L

Construct an NFA B′ by:

creating a new start state which is accepting;
adding an ε-transition from the new start state to the start
state of B
adding ε-transitions from the final states of B to the new start
state.

Similar arguments as before show that L(B′) = L(B)∗

128

Kleene star

Recall for a language X :
X ∗ = {w : w can be made up from 0 or more words in X}

Theorem

If L is regular languages, then L∗ is regular.

Proof:

Let B be an NFA such that L(B) = L

Construct an NFA B′ by:

creating a new start state which is accepting;
adding an ε-transition from the new start state to the start
state of B
adding ε-transitions from the final states of B to the new start
state.

Similar arguments as before show that L(B′) = L(B)∗

129

Kleene star

Recall for a language X :
X ∗ = {w : w can be made up from 0 or more words in X}

Theorem

If L is regular languages, then L∗ is regular.

Proof:

Let B be an NFA such that L(B) = L

Construct an NFA B′ by:

creating a new start state which is accepting;
adding an ε-transition from the new start state to the start
state of B
adding ε-transitions from the final states of B to the new start
state.

Similar arguments as before show that L(B′) = L(B)∗

130

Kleene star

Recall for a language X :
X ∗ = {w : w can be made up from 0 or more words in X}

Theorem

If L is regular languages, then L∗ is regular.

Proof:

Let B be an NFA such that L(B) = L

Construct an NFA B′ by:

creating a new start state which is accepting;
adding an ε-transition from the new start state to the start
state of B
adding ε-transitions from the final states of B to the new start
state.

Similar arguments as before show that L(B′) = L(B)∗

131

Regular operations

Concatenation, union, and Kleene star are collectively known as
the regular operations.

Recall:

The definition of a program in L+:

P ::= (x := e) | ϕ | P1;P2 | P1 + P2 | P∗1

132

Regular operations

Concatenation, union, and Kleene star are collectively known as
the regular operations.

Recall:

The definition of a program in L+:

P ::= (x := e) | ϕ | P1;P2 | P1 + P2 | P∗1

133

Summary

Recap

Deterministic Finite Automata

Non-deterministic Finite Automata

Regular languages

Regular expressions

Mealy machines

134

Regular expressions

Given a finite set Σ, a regular expression over Σ (RE) is defined
recursively as follows:

∅ is a regular expression

ε is a regular expression

a is a regular expression for all a ∈ Σ

If E1 and E2 are regular expressions, then E1E2 is a regular
expression

If E1 and E2 are regular expressions, then E1 + E2 is a regular
expression

If E is a regular expression, then E ∗ is a regular expression

We use parentheses to disambiguate REs, though ∗ binds tighter
than concatenation, which binds tighter than +.

135

Examples

Example

The following are regular expressions over Σ = {0, 1}:
∅
101 + 010

(ε+ 10)∗01

136

