COMP2111 Week 7

Term 1, 2019
Finite automata

Summary

Recap

Deterministic Finite Automata
Non-deterministic Finite Automata
Regular languages

Regular expressions

Mealy machines

Summary

Recap

Deterministic Finite Automata
Non-deterministic Finite Automata
Regular languages

Regular expressions

Mealy machines

Transition systems

A transition system (or state machine) is a pair (S,—) where S
is a set and -C S x S is a binary relation.

NB

S is not necessarily finite.

Transition systems may have:
@ A-labelled transitions: -=C S x A x S
@ A start/initial state sp € S
@ A set of final states F C S (where runs terminate)

If — is a function (from S x A to S) then the transition system is
deterministic. In general a transition system is
non-deterministic.

Abstraction

Transition systems model computational processes abstractly.

We are not concerned with:
@ the internal structure of states; or

@ the nature of the transition relation (i.e. why two states are
related)

Reachability and Runs

A state s’ is reachable from a state s if (s,s') €—* (the transitive
closure of —).

A run from a state s is a sequence sy, sy, ... such that s; = s and
si — sjy1 for all i.
NB

In a non-deterministic transition system there may be many
(including none) runs from a state. In an unlabelled deterministic
transition system there is exactly one run from every state.

Acceptors and Transducers

An acceptor is a transition system with:
@ (input-)labelled transitions
@ a start/initial state

@ a set of final states

A transducer is a transition system with:
o (input & output-)labelled transitions

@ a start/initial state

NB

Acceptors accept/reject sequences of inputs. Transducers map
sequences of inputs to sequences of outputs.

Summary

Recap

Deterministic Finite Automata
Non-deterministic Finite Automata
Regular languages

Regular expressions

Mealy machines

Deterministic Finite Automata
0 1
0

(O OWO

0.1

A deterministic finite automaton (DFA) is a deterministic, finite
state acceptor.

DFAs represent “computation with finite memory”

DFAs form the backbone of most computational models

Deterministic Finite Automata

0 1
0
@ 1
—
0,1

Formally, a deterministic finite automaton (DFA) is a tuple
(Q,%,6,qo, F) where

@ @ is a finite set of states

@ X is the input alphabet

@ 0: QXX — Q is the transition function
@ qo € Q is the start state

@ F C Q is the set of final/accepting states

Deterministic Finite Automata

0 1
0
@ 1
—
0,1

Formally, a deterministic finite automaton (DFA) is a tuple
(Q,%,6,qo, F) where

e Q@ is a finite set of states: Q@ = {qo, 91, 92}
@ X is the input alphabet

@ 0: QXX — Q is the transition function

@ qop € Q is the start state

@ F C Q is the set of final/accepting states

Deterministic Finite Automata

0 1
0

(O OWO

0.1

Formally, a deterministic finite automaton (DFA) is a tuple
(Q,%,6,qo, F) where

e Q@ is a finite set of states: Q@ = {qo, 91, 92}
@ ¥ is the input alphabet: ¥ = {0,1}

@ 0: QXX — Q is the transition function

@ qop € Q is the start state

@ F C Q is the set of final/accepting states

Deterministic Finite Automata

0 1
0
@ 1
—
0,1

Deterministic Finite Automata

0 1
0

(O OWO

0.1

Deterministic Finite Automata

0 1
0

(O OWO

0.1

Formally, a deterministic finite automaton (DFA) is a tuple
(Q,%,6,qo, F) where

e Q@ is a finite set of states: Q@ = {qo, 91, 92}

@ ¥ is the input alphabet: ¥ = {0,1}

@ 0: QXX — Q is the transition function

@ qop € Q is the start state

@ F C Q is the set of final/accepting states: F = {q1}

Language of a DFA

0 1
0
@ 1
—
0,1

A DFA accepts a sequence of symbols from ¥ —i.e. elements of ©*

Informally: A word defines a run in the DFA and the word is accepted
if the run ends in a final state.

Language of a DFA

0 1
0
~(=)—
0,1
w: 1001

A DFA accepts a sequence of symbols from ¥ —i.e. elements of L*

Language of a DFA

0 1
0
-@—
0,1
w: 1001

A DFA accepts a sequence of symbols from ¥ —i.e. elements of L*
@ Start in state qg

Language of a DFA

0 1
0
-@—
0,1
w: 1001

A DFA accepts a sequence of symbols from ¥ —i.e. elements of L*
@ Start in state qg
@ Take the first symbol of w

Language of a DFA

0 1
0
-@—
0,1
w: 1001

A DFA accepts a sequence of symbols from ¥ —i.e. elements of L*
@ Start in state qg
@ Take the first symbol of w

@ Repeat the following until there are no symbols left:

o Based on the current state and current input symbol,
transition to the appropriate state determined by §

Language of a DFA

0 1
0
~(=)—
0,1
w: 1001

A DFA accepts a sequence of symbols from ¥ —i.e. elements of L*
@ Start in state qg
@ Take the first symbol of w

@ Repeat the following until there are no symbols left:

o Based on the current state and current input symbol,
transition to the appropriate state determined by §

Language of a DFA

0 1
0
~(=)—
0,1
w: 1001

A DFA accepts a sequence of symbols from ¥ —i.e. elements of L*
@ Start in state qg
@ Take the first symbol of w

@ Repeat the following until there are no symbols left:

o Based on the current state and current input symbol,
transition to the appropriate state determined by §
@ Move to the next symbol in w

Language of a DFA

0 1
0
~(=)—
0,1
w: 1001

A DFA accepts a sequence of symbols from ¥ —i.e. elements of L*
@ Start in state qg
@ Take the first symbol of w

@ Repeat the following until there are no symbols left:

o Based on the current state and current input symbol,
transition to the appropriate state determined by §
@ Move to the next symbol in w

Language of a DFA

0 1
0
~(=)—
0,1
w: 1001

A DFA accepts a sequence of symbols from ¥ —i.e. elements of L*
@ Start in state qg
@ Take the first symbol of w

@ Repeat the following until there are no symbols left:

o Based on the current state and current input symbol,
transition to the appropriate state determined by §
@ Move to the next symbol in w

Language of a DFA

0 1
0
~(=)—
0,1
w: 1001

A DFA accepts a sequence of symbols from ¥ —i.e. elements of L*
@ Start in state qg
@ Take the first symbol of w

@ Repeat the following until there are no symbols left:

o Based on the current state and current input symbol,
transition to the appropriate state determined by §
@ Move to the next symbol in w

Language of a DFA

0 1
0
~(=)—
0,1
w: 1001

A DFA accepts a sequence of symbols from ¥ —i.e. elements of L*
@ Start in state qg
@ Take the first symbol of w

@ Repeat the following until there are no symbols left:

o Based on the current state and current input symbol,
transition to the appropriate state determined by §
@ Move to the next symbol in w

Language of a DFA

0 1
0
~(=)—
0,1
w: 1001

A DFA accepts a sequence of symbols from ¥ —i.e. elements of L*
@ Start in state qg
@ Take the first symbol of w

@ Repeat the following until there are no symbols left:

o Based on the current state and current input symbol,
transition to the appropriate state determined by §
@ Move to the next symbol in w

Language of a DFA

0 1
0
~(=)—
0,1
w: 1001

A DFA accepts a sequence of symbols from ¥ —i.e. elements of L*
@ Start in state qg
@ Take the first symbol of w

@ Repeat the following until there are no symbols left:

o Based on the current state and current input symbol,
transition to the appropriate state determined by §
@ Move to the next symbol in w

Language of a DFA

0 1
0
~(=)—
0,1
w: 1001

A DFA accepts a sequence of symbols from ¥ —i.e. elements of L*
@ Start in state qg
@ Take the first symbol of w

@ Repeat the following until there are no symbols left:

o Based on the current state and current input symbol,
transition to the appropriate state determined by §
@ Move to the next symbol in w

@ Accept if the process ends in a final state; otherwise reject.

Language of a DFA

0 1
0
~(=)—
0,1
w: 1001 v

A DFA accepts a sequence of symbols from ¥ —i.e. elements of L*
@ Start in state qg
@ Take the first symbol of w

@ Repeat the following until there are no symbols left:

o Based on the current state and current input symbol,
transition to the appropriate state determined by §
@ Move to the next symbol in w

@ Accept if the process ends in a final state; otherwise reject.

Language of a DFA

0 1
0
@ 1
—
0,1

For a DFA A = (Q, %, 4, qo, F), the language of A, L(A), is the
set of words from X* which are accepted by A

Language of a DFA

0 1
0
@ 1
—
0,1

L(A) ={1,01,11,101,...}

For a DFA A = (Q, %, 4, qo, F), the language of A, L(A), is the
set of words from X* which are accepted by A

Language of a DFA

0 1
0
@ 1
—
0,1

L(A) ={1,01,11,101,...}

For a DFA A = (Q, %, 4, qo, F), the language of A, L(A), is the
set of words from X* which are accepted by A

A language L C X* is regular if there is some DFA A such that
L=L(A)

Language of a DFA: formally

Given a DFA A = (Q, X, 0, qo, F) we define L4 : Q — X*
inductively as follows:

o If g€ F then A € L4(q)
0 1f g2 ¢ and w € Lu(q') then aw € L4(q)

Language of a DFA: formally

Given a DFA A = (Q, X, 0, qo, F) we define L4 : Q — X*
inductively as follows:
o If g€ F then A € L4(q)
0 1f g2 ¢ and w € Lu(q') then aw € L4(q)
We then define
L(A) = La(qo)

Examples

Example

a b
Aq b
~(®)
a

L(A1) =7

Example

Examples

a

b

Aq b
)
a

L(A1) ={w e {a,b}" :

w ends with b}

Example

Examples

a b
b
a

L(A2) =7

As
—

Example

Examples

a
As
—>

b

b
a

L(A2) ={w e {a,b}" :

w ends with a} U {\}

Examples

Example
Find A3 such that L(A3) =0

Find A4 such that L(A4) = {\}

Examples

Example
Find A3 such that L(A3) = ()

a, b
A3

@

Find A4 such that L(A4) = {\}

Examples

Example
Find A3z such that L(A3) =0

a, b
A3

()
Find A4 such that L(A4) = {\}

a,b

00

As
—>

Examples

Example
Find As such that L(As) = {w € {a, b}*

: every odd symbol is b}

Examples

Example
Find As such that L(As) = {w € {a, b}* : every odd symbol is b}

a,b

Examples

Example

Find Ag such that
L(As) = {w € {a, b}* : second-last symbol is b}

Examples

Example

Find Ag such that
L(As) = {w € {a, b}* : second-last symbol is b}

Examples

Example

Find Ag such that
L(As) = {w € {a, b}* : second-last symbol is b}

Summary

Recap

Deterministic Finite Automata
Non-deterministic Finite Automata
Regular languages

Regular expressions

Mealy machines

Non-deterministic Finite Automata

0,1 1
0,¢
@ 1
—_—
0

A non-deterministic finite automaton (NFA) is a non-
deterministic, finite state acceptor.

More general than DFAs: A DFA is an NFA

Non-deterministic Finite Automata

0,1 1
0,
@ 1
—_—
0

Formally, a non-deterministic finite automaton (NFA) is a tuple
(Qa X, 57 qo0, F) where

@ @ is a finite set of states

@ X is the input alphabet

@ § C Q x (XU{e}) x Q is the transition relation
@ qo € Q is the start state

@ F C Q is the set of final/accepting states

Non-deterministic Finite Automata

0,1 1
0,
@ 1
—_—
0

Formally, a non-deterministic finite automaton (NFA) is a tuple
(Qa X, 57 qo0, F) where

e Q@ is a finite set of states: @ = {qo, 91, 92}

@ X is the input alphabet

@ § C Q x (XU{e}) x Q is the transition relation
@ qo € Q is the start state

e F C Q is the set of final/accepting states

Non-deterministic Finite Automata

0,1 1
0,
@ 1
—_—
0

Formally, a non-deterministic finite automaton (NFA) is a tuple
(Qa X, 57 qo0, F) where

e Q@ is a finite set of states: @ = {qo, 91, 92}

@ X is the input alphabet: ¥ = {0,1}

@ § C Q x (XU{e}) x Q is the transition relation
@ qo € Q is the start state

e F C Q is the set of final/accepting states

Non-deterministic Finite Automata

0,1 1
0,
@ 1
—_—
0

(CI17€; q2)7 (CILOa CI2), (CIl,qu),

{ (q0707q0)7 (q071aq0)7 (QO71,C71),}
) =
(q2701 ql)

Non-deterministic Finite Automata

0,1 1

0,
92— 1

0

5‘ € 0 1

do 0 {QO} {qo,ch}

qa |1} {e} {a}

@| 0 {aq} 0

Non-deterministic Finite Automata

0,1 1
0,
@ 1
—_—
0

Formally, a non-deterministic finite automaton (NFA) is a tuple
(Qa X, 57 qo0, F) where

e Q@ is a finite set of states: @ = {qo, 91, 92}

@ X is the input alphabet: ¥ = {0,1}

@ § C Q x (XU{e}) x Q is the transition relation

@ qo € Q is the start state

@ F C Q is the set of final/accepting states: F = {q1}

Language of an NFA

0,1 1
0,¢
@ 1
—_—
0

An NFA accepts a sequence of symbols from ¥ — i.e. elements of ©*

Informally: A word defines several runs in the NFA and the word is accepted
if at least one run ends in a final state.

Note 1: Runs can end prematurely (these don't count)

Note 2: An NFA will always “choose wisely”

Language of an NFA
01 1

T

0
w: 1000

Language of an NFA

0,1 1
0,¢
-@—
0
w: 1000

@ Start in state qg

Language of an NFA

0,1 1
0,¢
-@—
0
w: 1000

@ Start in state qg

@ Take the first symbol of w

Language of an NFA

0,1 1
0,¢
-@—
0
w: 1000

@ Start in state qg
@ Take the first symbol of w
@ Repeat until there are no symbols left or no transitions available:

o Based on the current state and current input symbol or e,
transition to any state determined by ¢

Language of an NFA

0,1 1
0,¢
~(=)—
0
w: 1000

@ Start in state qg
@ Take the first symbol of w
@ Repeat until there are no symbols left or no transitions available:

o Based on the current state and current input symbol or e,
transition to any state determined by ¢

Language of an NFA

0,1 1
0,¢
~(=)—
0
w: 1000

@ Start in state qg
@ Take the first symbol of w
@ Repeat until there are no symbols left or no transitions available:

o Based on the current state and current input symbol or e,
transition to any state determined by ¢
o If not an e-transition, move to the next symbol in w

Language of an NFA

0,1 1
0,¢
~(=)—
0
w: 1000

@ Start in state qg
@ Take the first symbol of w
@ Repeat until there are no symbols left or no transitions available:

o Based on the current state and current input symbol or e,
transition to any state determined by ¢
o If not an e-transition, move to the next symbol in w

Language of an NFA

0,1 1
0,¢
~(=)—
0
w: 1000

@ Start in state qg
@ Take the first symbol of w
@ Repeat until there are no symbols left or no transitions available:

o Based on the current state and current input symbol or e,
transition to any state determined by ¢
o If not an e-transition, move to the next symbol in w

Language of an NFA

0,1 1
0,¢
~(=)—
0
w: 1000

@ Start in state qg
@ Take the first symbol of w
@ Repeat until there are no symbols left or no transitions available:

o Based on the current state and current input symbol or e,
transition to any state determined by ¢
o If not an e-transition, move to the next symbol in w

Language of an NFA

0,1 1
0,¢
~(=)—
0
w: 1000

@ Start in state qg
@ Take the first symbol of w
@ Repeat until there are no symbols left or no transitions available:

o Based on the current state and current input symbol or e,
transition to any state determined by ¢
o If not an e-transition, move to the next symbol in w

Language of an NFA

0,1 1
0,¢
~(=)—
0
w: 1000

@ Start in state qg
@ Take the first symbol of w
@ Repeat until there are no symbols left or no transitions available:

o Based on the current state and current input symbol or e,
transition to any state determined by ¢
o If not an e-transition, move to the next symbol in w

Language of an NFA

0,1 1
0,e
~(=)—
0
w: 1000

@ Start in state qg
@ Take the first symbol of w
@ Repeat until there are no symbols left or no transitions available:

o Based on the current state and current input symbol or e,
transition to any state determined by ¢
o If not an e-transition, move to the next symbol in w

Language of an NFA

0,1 1
0,¢
~(=)—
0
w: 1000

@ Start in state qg
@ Take the first symbol of w
@ Repeat until there are no symbols left or no transitions available:

o Based on the current state and current input symbol or e,
transition to any state determined by ¢
o If not an e-transition, move to the next symbol in w

Language of an NFA

0,1 1
0,¢
~(=)—
0
w: 1000

@ Start in state qg
@ Take the first symbol of w
@ Repeat until there are no symbols left or no transitions available:

o Based on the current state and current input symbol or e,
transition to any state determined by ¢
o If not an e-transition, move to the next symbol in w

Language of an NFA

0,1 1
0,¢
~(=)—
0
w: 1000

@ Start in state qg
@ Take the first symbol of w
@ Repeat until there are no symbols left or no transitions available:

o Based on the current state and current input symbol or e,
transition to any state determined by ¢
o If not an e-transition, move to the next symbol in w

@ Accept if there are no symbols left and the process ends in a final
state, otherwise reject.

Language of an NFA

0,1 1
0,¢
~(=)—
0
w: 1000 v

@ Start in state qg
@ Take the first symbol of w
@ Repeat until there are no symbols left or no transitions available:

o Based on the current state and current input symbol or e,
transition to any state determined by ¢
o If not an e-transition, move to the next symbol in w

@ Accept if there are no symbols left and the process ends in a final
state, otherwise reject.

Language of an NFA

0,1 1
0,¢
@ 1
—_—
0

For an NFA A = (Q, X%, 0, qo, F), the language of A, L(.A), is the
set of words from X* which are accepted by A

Language of an NFA

0,1 1
0,¢
@ 1
—_—
0

L(A) = {1,01,11,10,...}

For an NFA A = (Q, X%, 0, qo, F), the language of A, L(.A), is the
set of words from X* which are accepted by A

Language of an NFA: formally

Given an NFA A = (Q, X, 0, qo, F) we define L4 : Q — X*
inductively as follows:

o If g€ F then A € L4(q)
0 If g2 ¢ and w € L4(q') then aw € L4(q)
o0 If g5 ¢ and w € Lu(q') then w € L4(q)

Language of an NFA: formally

Given an NFA A = (Q, X, 0, qo, F) we define L4 : Q — X*
inductively as follows:

o If g€ F then A € L4(q)
0 If g2 ¢ and w € L4(q') then aw € L4(q)
o0 If g5 ¢ and w € Lu(q') then w € L4(q)
We then define
L(A) = La(qo)

Examples

Example

a,b

B
OO,
9

L(By) =7

Examples

Example

a,b

B
OO,
9

L(B1) ={w € {a,b}* : w ends with b}

Examples

Example

a,b

()

L(By) =7

B>
9

Examples

Example

a,b

()

L(B2) = {a, b}"

B>
9

Examples

Example
Find Bs such that L(B3) =0

Find B4 such that L(Bs) = {\}

Examples

Example
Find Bs such that L(B3) =0

B3

Find B4 such that L(Bs) = {\}

Examples

Example
Find Bs such that L(B3) =0

B3

Find B4 such that L(Bs) = {\}
Ba

Examples

Example
Find Bs such that L(Bs) = {w € {a, b}*

: second-last symbol is b}

Examples

Example
Find Bs such that L(Bs) = {w € {a, b}* : second-last symbol is b}

a, b

Bs
() ——(a)"
—

NFAs vs DFAs

Clearly for any DFA A there is an NFA B such that L(A) = L(B).

NFAs vs DFAs

Clearly for any DFA A there is an NFA B such that L(A) = L(B).

Theorem
For any NFA BB there is a DFA A such that L(A) = L(B).

NFAs vs DFAs

Clearly for any DFA A there is an NFA B such that L(A) = L(B).

Theorem
For any NFA B there is a DFA A such that L(A) = L(B).

Proof sketch: (Subset construction)
Given B = (Q, X, 0, qo, F), construct A = (Q',X,0, qp, F') as
follows:

e Q' = Pow(Q)
] 5/(X,a):{q/€ Q : EIC]EX,C]NE Q.qi>q” ;* q,}
° gy = {qo}

o FF={XeQ : XNF#0)
Intuitively: A keeps track of all the possible states B could be in
after seeing a given sequence of symbols.

Example

NFA to DFA Example

a, b

Bs
(o))
—

Example

NFA to DFA Example

a, b

o a b
0
{q0}
{a}
{@}
{Clm Ch}
{90, g2}
{CIL Clz}
{90, 91, 92}

Bs
—

Example

NFA to DFA Example

a, b

o a
0 0
{90}
{a}
{a}
{Clm Ch}
{90, g2}
{CIL Clz}
{90, 91, 92}

Bs
—

S| T

Example

NFA to DFA Example

a, b
Bs
—

6/

a

0
{90}
{a}
{3}

{Clm Ch}

{90, g2}

{CIL Clz}
{90, 91, 92}

b
0 0
{CIO} {CIo, Cll}

Example

NFA to DFA Example

a, b
Bs
—

6/

a

0
{90}
{a}
{a}

{Clm Ch}

{90, g2}

{CIL Clz}
{90, 91, 92}

b
0 0
{CIO} {CIo, Cll}
{a2} {a2}

Example

NFA to DFA Example

a, b
Bs
—

o a b
0 0 0
{CIO} {CIO} {Qanl}
{a1} {92} {92}
{a} 0 0
{Clm Ch}
{90, 2}
{QIa Clz}

{q07 a1, q2}

Example

NFA to DFA Example

a, b
Bs
—

o a b
0 0 0
{CIO} {CIO} {Qanl}
{a1} {92} {92}
{a} 0 0
{Cloﬂh} {q07CI2} {CIO,Q17€I2}
{90, g2}
{QIa Clz}

{q07 a1, q2}

Example

NFA to DFA Example

a, b
Bs
—

o a b
0 0 0
{CIO} {CIO} {Qanl}
{a1} {92} {92}
{a} 0 0
{Cloﬂh} {q07CI2} {CIO,Q17€I2}
{90, g2} {a0} {90, 91}
{QIa Clz}

{q07 a1, q2}

Example

NFA to DFA Example

a, b
Bs
—

o a b
0 0 0
{CIO} {CIO} {Qanl}
{a1} {92} {92}
{a} 0 0
{Cloﬂh} {q07CI2} {CIO,Q17€I2}
{90, g2} {a0} {90, 91}
{QIa Clz} {CI2} {CI2}

{q07 a1, q2}

Example

NFA to DFA Example

a, b
Bs
—

o a b
0 0 0
{CIO} {CIO} {Qanl}
{a1} {92} {92}
{a} 0 0
{Cloﬂh} {q07CI2} {CIO,Q17€I2}
{90, g2} {a0} {90, 91}
{QIa Clz} {CI2} {CI2}

{q07 a1, q2}

{q07q2} {quCI17Q2}

NFA to DFA Example

Example
a, b
Bs
OO
—_—

o a b

0 AlA A

{@} B|B E

{@} C|D D

{@! D|A A

{q0,q.} E|F H

{q0, a2} F|B E

{q1,92} G| D D

{90,q1.92} H|F H

100

NFA to DFA Example

Example
a, b
Bs
OO
Y

o a b

0 AlA A

{qo} B|B E

{q:} C|D D

{q} D|A A

{q0,q.} E|F H

{9,92} F|B E

{a1, 92} G|D D

{90,q1,2} H|F H

101

NFA to DFA Example

Example
a, b
Bs
OO
Y

o a b

0 Al A A

{q} B|B E

{q} c|D D

{32} DA A

{CIoafh} E|F H

{90, g2} F| B E

{q1.2} G| D D

{90, 91,92} H| F H

102

NFA to DFA Example

Example

a, b
5
a
a

2o

157

103

NFAs vs DFAs

Theorem

@ For any NFA with n states there exists a DFA with at most 2"
states that accepts the same language

@ There exist NFAs with n states such that the smallest DFA
that accepts the same language has at least 2" states.

104

Summary

Recap

Deterministic Finite Automata
Non-deterministic Finite Automata
Regular languages

Regular expressions

Mealy machines

105

Regular languages

A language L C X * is regular if there is some DFA A such that
L=1L(A)

106

Regular languages

A language L C X * is regular if there is some DFA A such that
L=1L(A)

Equivalently, there is some NFA B such that L = L(15)

107

Non-regular languages

Are there languages which are not regular?

108

Non-regular languages

Are there languages which are not regular? Yes

“Simple” counting argument: there are uncountably many
languages, and only countably many DFAs

109

Non-regular languages

Are there languages which are not regular? Yes

“Simple” counting argument: there are uncountably many
languages, and only countably many DFAs

An example of a non-regular language: {0"1" : n € N}
Intuitively: need arbitrary large memory to “remember” the
number of 0's

110

Theorem

Complementation

If L is a regular language then L = X*\ L is a regular language. J

Proof:

111

Complementation

Theorem
If L is a regular language then L = X*\ L is a regular language. J

Proof:
o Let A=(Q,X,0,qo, F) be a DFA such that L(A) =1L

112

Complementation

Theorem
If L is a regular language then L = X*\ L is a regular language. J

Proof:
o Let A=(Q,X,0,qo, F) be a DFA such that L(A) =1L
e Consider A’ = (Q,X,0,q0, Q\ F)

113

Complementation

Theorem
If L is a regular language then L = X*\ L is a regular language. }

Proof:
o Let A=(Q,X,0,qo, F) be a DFA such that L(A) =L

e Consider A’ = (Q,X,0,q0, Q\ F)
@ For any word w € ¥, the corresponding run in A is unique,
So:
o If we L(A) then w ¢ L(A), and
o If w¢ L(A) then w € L(A),

114

Complementation

Theorem
If L is a regular language then L¢ = ¥*\ L is a regular language. }

Proof:
o Let A=(Q,X,0,qo, F) be a DFA such that L(A) =L
e Consider A’ = (Q,X,0,q0, Q\ F)

@ For any word w € ¥, the corresponding run in A is unique,
So:

o If we L(A) then w ¢ L(A), and
o If w¢ L(A) then w e L(A),

@ Therefore L(A") = X*\ L(A) =L

115

Complementation

Theorem
If L is a regular language then L¢ = ¥*\ L is a regular language. }

Proof:
o Let A=(Q,X,0,qo, F) be a DFA such that L(A) =L
e Consider A’ = (Q,X,0,q0, Q\ F)
@ For any word w € ¥, the corresponding run in A is unique,
So:
o If we L(A) then w ¢ L(A), and
o If wé L(A) then w € L(A),

@ Therefore L(A") = X*\ L(A) =L

" |

This argument does not apply for NFAs (see By and ;)

116

Union

Theorem
If Ly and Ly are regular languages, then L1 U Ly is regular.

Proof:

117

Union

Theorem
If Ly and Ly are regular languages, then L1 U Ly is regular.

Proof:
@ Let B; and B, be NFAs such that L(B1) = L3 and L(B,) = Ly

118

Union

Theorem
If Ly and Ly are regular languages, then L1 U Ly is regular.

Proof:
@ Let B; and B, be NFAs such that L(B1) = L3 and L(B,) = Ly

@ Construct an NFA B by having a new start state with
e-transitions to the start states of B; and B>

119

Union

Theorem
If Ly and Ly are regular languages, then L1 U Ly is regular.

Proof:

@ Let B; and B, be NFAs such that L(B1) = L3 and L(B,) = Ly

@ Construct an NFA B by having a new start state with
e-transitions to the start states of B; and B>

@ Consider w € L1 U Ly:
o If w € L; then there is a run in By, and hence in B, which
ends in a final state
o If w € L, then there is a run in By, and hence in B, which
ends in a final state
o In either case w € L(B)

120

Union

Theorem
If Ly and Ly are regular languages, then L1 U Ly is regular.

Proof:
@ Let B; and B, be NFAs such that L(B1) = L3 and L(B,) = Ly

@ Construct an NFA B by having a new start state with
e-transitions to the start states of B; and B>
@ Consider w € L1 U Ly:

o If w € L; then there is a run in By, and hence in B, which
ends in a final state

o If w € L, then there is a run in By, and hence in B, which
ends in a final state

o In either case w € L(B)

@ Conversely, any accepting run in B will be either an accepting
run in By or in By; so if w € L(B) then w € L1 U Lp

121

Intersection

Theorem
If L1 and Ly are regular languages, then L1 N Ly is regular.

Proof:

122

Intersection

Theorem
If L1 and Ly are regular languages, then L1 N Ly is regular.

Proof:
LiNLy, = (Lcl: U Lg)c

123

Concatenation
Recall for languages X and Y: X - Y ={xy : x€ X,y € Y}

Theorem
If Ly and Ly are regular languages, then Ly - Ly is regular.

Proof:

124

Concatenation
Recall for languages X and Y: X - Y ={xy : x€ X,y € Y}

Theorem
If Ly and Ly are regular languages, then Ly - Ly is regular.

Proof:
@ Let B; and By be NFAs such that L(B1) = L and L(B2) = L»

125

Concatenation
Recall for languages X and Y: X - Y ={xy : x€ X,y € Y}

Theorem
If Ly and Ly are regular languages, then Ly - Ly is regular.

Proof:
@ Let B; and By be NFAs such that L(B1) = L and L(B2) = L»
@ Construct an NFA B by adding e-transitions from the final
states of 1 to the start state of B>. Let the start state of B
be the start state of B1; and let the final states of B3 be the
final states of B>.

126

Concatenation
Recall for languages X and Y: X - Y ={xy : x€ X,y € Y}

Theorem
If Ly and Ly are regular languages, then Ly - Ly is regular.

Proof:

@ Let B; and By be NFAs such that L(B1) = L and L(B2) = L»

@ Construct an NFA B by adding e-transitions from the final
states of 1 to the start state of B>. Let the start state of B
be the start state of B1; and let the final states of B3 be the
final states of B>.

@ Any word in Ly - L can be written as wv with w € L; and
v € Ly. w has an accepting run in B; and v has an accepting
run in By, so wv has an accepting run in B5.

127

Concatenation
Recall for languages X and Y: X - Y ={xy : x€ X,y € Y}

Theorem
If Ly and Ly are regular languages, then Ly - Ly is regular.

Proof:

@ Let B; and By be NFAs such that L(B1) = L and L(B2) = L»

@ Construct an NFA B by adding e-transitions from the final
states of 1 to the start state of B>. Let the start state of B
be the start state of B1; and let the final states of B3 be the
final states of B>.

@ Any word in Ly - L can be written as wv with w € L; and
v € Ly. w has an accepting run in B; and v has an accepting
run in By, so wv has an accepting run in B5.

@ Conversely, any word w with an accepting run in B can be
broken up into an accepting run in By followed by an
accepting run in Ba. Thus w can be broken up into two words
w = xy where x € L1 and y € L5.

128

Kleene star

Recall for a language X:
X*={w : w can be made up from 0 or more words in X}

Theorem
If L is regular languages, then L* is regular.

Proof:

129

Kleene star

Recall for a language X:
X*={w : w can be made up from 0 or more words in X}

Theorem
If L is regular languages, then L* is regular.

Proof:
@ Let B be an NFA such that L(B) =L

130

Kleene star

Recall for a language X:

X*={w :

w can be made up from 0 or more words in X}

Theorem

If L is regular languages, then L* is regular.

Proof:

@ Let B be an NFA such that L(B) =L
@ Construct an NFA B’ by:

creating a new start state which is accepting;

adding an e-transition from the new start state to the start
state of B

adding e-transitions from the final states of B to the new start
state.

Kleene star

Recall for a language X:
X*={w : w can be made up from 0 or more words in X}

Theorem
If L is regular languages, then L* is regular.

Proof:

@ Let B be an NFA such that L(B) =L
@ Construct an NFA B’ by:

e creating a new start state which is accepting;

e adding an e-transition from the new start state to the start
state of B

e adding e-transitions from the final states of B to the new start
state.

@ Similar arguments as before show that L(B') = L(B)*

131

132

Regular operations

Concatenation, union, and Kleene star are collectively known as
the regular operations.

133

Regular operations

Concatenation, union, and Kleene star are collectively known as
the regular operations.

Recall:

The definition of a program in £7:

P = (x:=¢€)|e|P;P|P1+P|P;

134

Summary

Recap

Deterministic Finite Automata
Non-deterministic Finite Automata
Regular languages

Regular expressions

Mealy machines

135

Regular expressions

Given a finite set X, a regular expression over ¥~ (RE) is defined
recursively as follows:

@ () is a regular expression

@ c is a regular expression

@ ais a regular expression for all a € &
°

If E1 and E; are regular expressions, then E;E> is a regular
expression

If E; and E; are regular expressions, then E; + E is a regular
expression

o If E is a regular expression, then E* is a regular expression

We use parentheses to disambiguate REs, though * binds tighter
than concatenation, which binds tighter than +.

136

Examples

Example

The following are regular expressions over ¥ = {0, 1}:
°(
e 101 4 010
e (e+10)*01

