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Transition systems

A transition system (or state machine) is a pair (S,—) where S
is a set and -C S x S is a binary relation.

NB

S is not necessarily finite.

Transition systems may have:
@ A-labelled transitions: -=C S x A x S
@ A start/initial state sp € S
@ A set of final states F C S (where runs terminate)

If — is a function (from S x A to S) then the transition system is
deterministic. In general a transition system is
non-deterministic.



Abstraction

Transition systems model computational processes abstractly.

We are not concerned with:
@ the internal structure of states; or

@ the nature of the transition relation (i.e. why two states are
related)



Reachability and Runs

A state s’ is reachable from a state s if (s,s') €—* (the transitive
closure of —).

A run from a state s is a sequence sy, sy, ... such that s; = s and
si — sjy1 for all i.
NB

In a non-deterministic transition system there may be many
(including none) runs from a state. In an unlabelled deterministic
transition system there is exactly one run from every state.




Acceptors and Transducers

An acceptor is a transition system with:
@ (input-)labelled transitions
@ a start/initial state

@ a set of final states

A transducer is a transition system with:
o (input & output-)labelled transitions

@ a start/initial state

NB

Acceptors accept/reject sequences of inputs. Transducers map
sequences of inputs to sequences of outputs.
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A deterministic finite automaton (DFA) is a deterministic, finite
state acceptor.

DFAs represent “computation with finite memory”

DFAs form the backbone of most computational models
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Formally, a deterministic finite automaton (DFA) is a tuple
(Q,%,6,qo, F) where

@ @ is a finite set of states

@ X is the input alphabet

@ 0: QXX — Q is the transition function
@ qo € Q is the start state

@ F C Q is the set of final/accepting states
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Formally, a deterministic finite automaton (DFA) is a tuple
(Q,%,6,qo, F) where

e Q@ is a finite set of states: Q@ = {qo, 91, 92}
@ ¥ is the input alphabet: ¥ = {0,1}

@ 0: QXX — Q is the transition function

@ qop € Q is the start state

@ F C Q is the set of final/accepting states
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Formally, a deterministic finite automaton (DFA) is a tuple
(Q,%,6,qo, F) where

e Q@ is a finite set of states: Q@ = {qo, 91, 92}

@ ¥ is the input alphabet: ¥ = {0,1}

@ 0: QXX — Q is the transition function

@ qop € Q is the start state

@ F C Q is the set of final/accepting states: F = {q1}
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A DFA accepts a sequence of symbols from ¥ —i.e. elements of ©*

Informally: A word defines a run in the DFA and the word is accepted
if the run ends in a final state.
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A DFA accepts a sequence of symbols from ¥ —i.e. elements of L*
@ Start in state qg
@ Take the first symbol of w

@ Repeat the following until there are no symbols left:

o Based on the current state and current input symbol,
transition to the appropriate state determined by §
@ Move to the next symbol in w

@ Accept if the process ends in a final state; otherwise reject.



Language of a DFA

0 1
0
@ 1
—
0,1

For a DFA A = (Q, %, 4, qo, F), the language of A, L(A), is the
set of words from X* which are accepted by A
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L(A) ={1,01,11,101,...}

For a DFA A = (Q, %, 4, qo, F), the language of A, L(A), is the
set of words from X* which are accepted by A
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L(A) ={1,01,11,101,...}

For a DFA A = (Q, %, 4, qo, F), the language of A, L(A), is the
set of words from X* which are accepted by A

A language L C X* is regular if there is some DFA A such that
L=L(A)
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inductively as follows:
o If g€ F then A € L4(q)
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a, b
A3
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Find A4 such that L(A4) = {\}
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A non-deterministic finite automaton (NFA) is a non-
deterministic, finite state acceptor.

More general than DFAs: A DFA is an NFA
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Formally, a non-deterministic finite automaton (NFA) is a tuple
(Qa X, 57 qo0, F) where

@ @ is a finite set of states

@ X is the input alphabet

@ § C Q x (XU{e}) x Q is the transition relation
@ qo € Q is the start state

@ F C Q is the set of final/accepting states



Non-deterministic Finite Automata

0,1 1
0,
@ 1
—_—
0

Formally, a non-deterministic finite automaton (NFA) is a tuple
(Qa X, 57 qo0, F) where

e Q@ is a finite set of states: @ = {qo, 91, 92}

@ X is the input alphabet

@ § C Q x (XU{e}) x Q is the transition relation
@ qo € Q is the start state

e F C Q is the set of final/accepting states
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Formally, a non-deterministic finite automaton (NFA) is a tuple
(Qa X, 57 qo0, F) where

e Q@ is a finite set of states: @ = {qo, 91, 92}

@ X is the input alphabet: ¥ = {0,1}

@ § C Q x (XU{e}) x Q is the transition relation
@ qo € Q is the start state

e F C Q is the set of final/accepting states
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Formally, a non-deterministic finite automaton (NFA) is a tuple
(Qa X, 57 qo0, F) where

e Q@ is a finite set of states: @ = {qo, 91, 92}

@ X is the input alphabet: ¥ = {0,1}

@ § C Q x (XU{e}) x Q is the transition relation

@ qo € Q is the start state

@ F C Q is the set of final/accepting states: F = {q1}
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An NFA accepts a sequence of symbols from ¥ — i.e. elements of ©*

Informally: A word defines several runs in the NFA and the word is accepted
if at least one run ends in a final state.

Note 1: Runs can end prematurely (these don't count)

Note 2: An NFA will always “choose wisely”
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@ Start in state qg
@ Take the first symbol of w
@ Repeat until there are no symbols left or no transitions available:

o Based on the current state and current input symbol or e,
transition to any state determined by ¢
o If not an e-transition, move to the next symbol in w

@ Accept if there are no symbols left and the process ends in a final
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For an NFA A = (Q, X%, 0, qo, F), the language of A, L(.A), is the
set of words from X* which are accepted by A
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L(A) = {1,01,11,10,...}

For an NFA A = (Q, X%, 0, qo, F), the language of A, L(.A), is the
set of words from X* which are accepted by A



Language of an NFA: formally

Given an NFA A = (Q, X, 0, qo, F) we define L4 : Q — X*
inductively as follows:

o If g€ F then A € L4(q)
0 If g2 ¢ and w € L4(q') then aw € L4(q)
o0 If g5 ¢ and w € Lu(q') then w € L4(q)



Language of an NFA: formally

Given an NFA A = (Q, X, 0, qo, F) we define L4 : Q — X*
inductively as follows:

o If g€ F then A € L4(q)
0 If g2 ¢ and w € L4(q') then aw € L4(q)
o0 If g5 ¢ and w € Lu(q') then w € L4(q)
We then define
L(A) = La(qo)



Examples

Example

a,b

B
OO,
9

L(By) =7




Examples

Example

a,b

B
OO,
9

L(B1) ={w € {a,b}* : w ends with b}
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Find Bs such that L(Bs) = {w € {a, b}* : second-last symbol is b}

a, b

Bs
() ——(a)"
—
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NFAs vs DFAs

Clearly for any DFA A there is an NFA B such that L(A) = L(B).

Theorem
For any NFA B there is a DFA A such that L(A) = L(B).

Proof sketch: (Subset construction)
Given B = (Q, X, 0, qo, F), construct A = (Q',X,0, qp, F') as
follows:

e Q' = Pow(Q)
] 5/(X,a):{q/€ Q : EIC]EX,C]NE Q.qi>q” ;* q,}
° gy = {qo}

o FF={XeQ : XNF#0)
Intuitively: A keeps track of all the possible states B could be in
after seeing a given sequence of symbols.
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NFA to DFA Example

a, b

o a
0 0
{90}
{a}
{a}
{Clm Ch}
{90, g2}
{CIL Clz}
{90, 91, 92}

Bs
—

S| T
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a

0
{90}
{a}
{3}

{Clm Ch}

{90, g2}

{CIL Clz}
{90, 91, 92}

b
0 0
{CIO} {CIo, Cll}
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a

0
{90}
{a}
{a}

{Clm Ch}

{90, g2}

{CIL Clz}
{90, 91, 92}

b
0 0
{CIO} {CIo, Cll}
{a2} {a2}
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o a b
0 0 0
{CIO} {CIO} {Qanl}
{a1} {92} {92}
{a} 0 0
{Clm Ch}
{90, 2}
{QIa Clz}

{q07 a1, q2}
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NFA to DFA Example

a, b
Bs
—

o a b
0 0 0
{CIO} {CIO} {Qanl}
{a1} {92} {92}
{a} 0 0
{Cloﬂh} {q07CI2} {CIO,Q17€I2}
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{QIa Clz} {CI2} {CI2}
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Example

NFA to DFA Example

a, b
Bs
—

o a b
0 0 0
{CIO} {CIO} {Qanl}
{a1} {92} {92}
{a} 0 0
{Cloﬂh} {q07CI2} {CIO,Q17€I2}
{90, g2} {a0} {90, 91}
{QIa Clz} {CI2} {CI2}

{q07 a1, q2}

{q07q2} {quCI17Q2}




NFA to DFA Example

Example
a, b
Bs
OO
—_—

o a b

0 AlA A

{@} B|B E

{@} C|D D

{@! D|A A

{q0,q.} E|F H

{q0, a2} F|B E

{q1,92} G| D D

{90,q1.92} H|F H
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NFA to DFA Example

Example
a, b
Bs
OO
Y

o a b

0 AlA A

{qo} B|B E

{q:} C|D D

{q} D|A A

{q0,q.} E|F H

{9,92} F|B E

{a1, 92} G|D D

{90,q1,2} H|F H




101

NFA to DFA Example

Example
a, b
Bs
OO
Y

o a b

0 Al A A

{q} B|B E

{q} c|D D

{32} DA A

{CIoafh} E|F H

{90, g2} F| B E

{q1.2} G| D D

{90, 91,92} H| F H
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NFA to DFA Example

Example

a, b
5
a
a

2o

157
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NFAs vs DFAs

Theorem

@ For any NFA with n states there exists a DFA with at most 2"
states that accepts the same language

@ There exist NFAs with n states such that the smallest DFA
that accepts the same language has at least 2" states.
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Summary

Recap

Deterministic Finite Automata
Non-deterministic Finite Automata
Regular languages

Regular expressions

Mealy machines
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Regular languages

A language L C X * is regular if there is some DFA A such that
L=1L(A)
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Regular languages

A language L C X * is regular if there is some DFA A such that
L=1L(A)

Equivalently, there is some NFA B such that L = L(15)
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Non-regular languages

Are there languages which are not regular?
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Non-regular languages

Are there languages which are not regular? Yes

“Simple” counting argument: there are uncountably many
languages, and only countably many DFAs
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Non-regular languages

Are there languages which are not regular? Yes

“Simple” counting argument: there are uncountably many
languages, and only countably many DFAs

An example of a non-regular language: {0"1" : n € N}
Intuitively: need arbitrary large memory to “remember” the
number of 0's
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Theorem

Complementation

If L is a regular language then L = X*\ L is a regular language. J

Proof:
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Complementation

Theorem
If L is a regular language then L = X*\ L is a regular language. J

Proof:
o Let A=(Q,X,0,qo, F) be a DFA such that L(A) =1L
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Complementation

Theorem
If L is a regular language then L = X*\ L is a regular language. J

Proof:
o Let A=(Q,X,0,qo, F) be a DFA such that L(A) =1L
e Consider A’ = (Q,X,0,q0, Q\ F)
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Complementation

Theorem
If L is a regular language then L = X*\ L is a regular language. }

Proof:
o Let A=(Q,X,0,qo, F) be a DFA such that L(A) =L

e Consider A’ = (Q,X,0,q0, Q\ F)
@ For any word w € ¥, the corresponding run in A is unique,
So:
o If we L(A) then w ¢ L(A), and
o If w¢ L(A) then w € L(A),
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Complementation

Theorem
If L is a regular language then L¢ = ¥*\ L is a regular language. }

Proof:
o Let A=(Q,X,0,qo, F) be a DFA such that L(A) =L
e Consider A’ = (Q,X,0,q0, Q\ F)

@ For any word w € ¥, the corresponding run in A is unique,
So:

o If we L(A) then w ¢ L(A), and
o If w¢ L(A) then w e L(A),

@ Therefore L(A") = X*\ L(A) =L
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Complementation

Theorem
If L is a regular language then L¢ = ¥*\ L is a regular language. }

Proof:
o Let A=(Q,X,0,qo, F) be a DFA such that L(A) =L
e Consider A’ = (Q,X,0,q0, Q\ F)
@ For any word w € ¥, the corresponding run in A is unique,
So:
o If we L(A) then w ¢ L(A), and
o If wé L(A) then w € L(A),

@ Therefore L(A") = X*\ L(A) =L

" |

This argument does not apply for NFAs (see By and ;)
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Union

Theorem
If Ly and Ly are regular languages, then L1 U Ly is regular.

Proof:
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Union

Theorem
If Ly and Ly are regular languages, then L1 U Ly is regular.

Proof:
@ Let B; and B, be NFAs such that L(B1) = L3 and L(B,) = Ly
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Union

Theorem
If Ly and Ly are regular languages, then L1 U Ly is regular.

Proof:
@ Let B; and B, be NFAs such that L(B1) = L3 and L(B,) = Ly

@ Construct an NFA B by having a new start state with
e-transitions to the start states of B; and B>
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Union

Theorem
If Ly and Ly are regular languages, then L1 U Ly is regular.

Proof:

@ Let B; and B, be NFAs such that L(B1) = L3 and L(B,) = Ly

@ Construct an NFA B by having a new start state with
e-transitions to the start states of B; and B>

@ Consider w € L1 U Ly:
o If w € L; then there is a run in By, and hence in B, which
ends in a final state
o If w € L, then there is a run in By, and hence in B, which
ends in a final state
o In either case w € L(B)
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Union

Theorem
If Ly and Ly are regular languages, then L1 U Ly is regular.

Proof:
@ Let B; and B, be NFAs such that L(B1) = L3 and L(B,) = Ly

@ Construct an NFA B by having a new start state with
e-transitions to the start states of B; and B>
@ Consider w € L1 U Ly:

o If w € L; then there is a run in By, and hence in B, which
ends in a final state

o If w € L, then there is a run in By, and hence in B, which
ends in a final state

o In either case w € L(B)

@ Conversely, any accepting run in B will be either an accepting
run in By or in By; so if w € L(B) then w € L1 U Lp
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Intersection

Theorem
If L1 and Ly are regular languages, then L1 N Ly is regular.

Proof:
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Intersection

Theorem
If L1 and Ly are regular languages, then L1 N Ly is regular.

Proof:
LiNLy, = (Lcl: U Lg)c
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Concatenation
Recall for languages X and Y: X - Y ={xy : x€ X,y € Y}

Theorem
If Ly and Ly are regular languages, then Ly - Ly is regular.

Proof:
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Concatenation
Recall for languages X and Y: X - Y ={xy : x€ X,y € Y}

Theorem
If Ly and Ly are regular languages, then Ly - Ly is regular.

Proof:
@ Let B; and By be NFAs such that L(B1) = L and L(B2) = L»
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Concatenation
Recall for languages X and Y: X - Y ={xy : x€ X,y € Y}

Theorem
If Ly and Ly are regular languages, then Ly - Ly is regular.

Proof:
@ Let B; and By be NFAs such that L(B1) = L and L(B2) = L»
@ Construct an NFA B by adding e-transitions from the final
states of 1 to the start state of B>. Let the start state of B
be the start state of B1; and let the final states of B3 be the
final states of B>.
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Concatenation
Recall for languages X and Y: X - Y ={xy : x€ X,y € Y}

Theorem
If Ly and Ly are regular languages, then Ly - Ly is regular.

Proof:

@ Let B; and By be NFAs such that L(B1) = L and L(B2) = L»

@ Construct an NFA B by adding e-transitions from the final
states of 1 to the start state of B>. Let the start state of B
be the start state of B1; and let the final states of B3 be the
final states of B>.

@ Any word in Ly - L can be written as wv with w € L; and
v € Ly. w has an accepting run in B; and v has an accepting
run in By, so wv has an accepting run in B5.
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Concatenation
Recall for languages X and Y: X - Y ={xy : x€ X,y € Y}

Theorem
If Ly and Ly are regular languages, then Ly - Ly is regular.

Proof:

@ Let B; and By be NFAs such that L(B1) = L and L(B2) = L»

@ Construct an NFA B by adding e-transitions from the final
states of 1 to the start state of B>. Let the start state of B
be the start state of B1; and let the final states of B3 be the
final states of B>.

@ Any word in Ly - L can be written as wv with w € L; and
v € Ly. w has an accepting run in B; and v has an accepting
run in By, so wv has an accepting run in B5.

@ Conversely, any word w with an accepting run in B can be
broken up into an accepting run in By followed by an
accepting run in Ba. Thus w can be broken up into two words
w = xy where x € L1 and y € L5.
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Kleene star

Recall for a language X:
X*={w : w can be made up from 0 or more words in X}

Theorem
If L is regular languages, then L* is regular.

Proof:
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Kleene star

Recall for a language X:
X*={w : w can be made up from 0 or more words in X}

Theorem
If L is regular languages, then L* is regular.

Proof:
@ Let B be an NFA such that L(B) =L
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Kleene star

Recall for a language X:

X*={w :

w can be made up from 0 or more words in X}

Theorem

If L is regular languages, then L* is regular.

Proof:

@ Let B be an NFA such that L(B) =L
@ Construct an NFA B’ by:

creating a new start state which is accepting;

adding an e-transition from the new start state to the start
state of B

adding e-transitions from the final states of B to the new start
state.



Kleene star

Recall for a language X:
X*={w : w can be made up from 0 or more words in X}

Theorem
If L is regular languages, then L* is regular.

Proof:

@ Let B be an NFA such that L(B) =L
@ Construct an NFA B’ by:

e creating a new start state which is accepting;

e adding an e-transition from the new start state to the start
state of B

e adding e-transitions from the final states of B to the new start
state.

@ Similar arguments as before show that L(B') = L(B)*

131
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Regular operations

Concatenation, union, and Kleene star are collectively known as
the regular operations.
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Regular operations

Concatenation, union, and Kleene star are collectively known as
the regular operations.

Recall:

The definition of a program in £7:

P = (x:=¢€)|e|P;P|P1+P|P;
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Summary

Recap

Deterministic Finite Automata
Non-deterministic Finite Automata
Regular languages

Regular expressions

Mealy machines
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Regular expressions

Given a finite set X, a regular expression over ¥~ (RE) is defined
recursively as follows:

@ () is a regular expression

@ c is a regular expression

@ ais a regular expression for all a € &
°

If E1 and E; are regular expressions, then E;E> is a regular
expression

If E; and E; are regular expressions, then E; + E is a regular
expression

o If E is a regular expression, then E* is a regular expression

We use parentheses to disambiguate REs, though * binds tighter
than concatenation, which binds tighter than +.
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Examples

Example

The following are regular expressions over ¥ = {0, 1}:
°(
e 101 4 010
e (e+10)*01




