COMP2111 Week 7
Term 1, 2019
Finite automata
Summary

- Recap
- Deterministic Finite Automata
- Non-deterministic Finite Automata
- Regular languages
- Regular expressions
- Mealy machines
Summary

- Recap
- Deterministic Finite Automata
- Non-deterministic Finite Automata
- Regular languages
- Regular expressions
- Mealy machines
Transition systems

A transition system (or state machine) is a pair \((S, \rightarrow)\) where \(S\) is a set and \(\rightarrow \subseteq S \times S\) is a binary relation.

NB

\(S\) is not necessarily finite.

Transition systems may have:

- \(\Lambda\)-labelled transitions: \(\rightarrow \subseteq S \times \Lambda \times S\)
- A start/initial state \(s_0 \in S\)
- A set of final states \(F \subseteq S\) (where runs terminate)

If \(\rightarrow\) is a function (from \(S \times \Lambda\) to \(S\)) then the transition system is **deterministic**. In general a transition system is **non-deterministic**.
Abstraction

Transition systems model computational processes *abstractly*.

We are not concerned with:

- the internal structure of states; or
- the nature of the transition relation (i.e. *why* two states are related)
Reachability and Runs

A state s' is **reachable** from a state s if $(s, s') \in \rightarrow^*$ (the transitive closure of \rightarrow).

A **run** from a state s is a sequence s_1, s_2, \ldots such that $s_1 = s$ and $s_i \rightarrow s_{i+1}$ for all i.

NB

In a non-deterministic transition system there may be many (including none) runs from a state. In an unlabelled deterministic transition system there is exactly one run from every state.
Acceptors and Transducers

An acceptor is a transition system with:
- (input-)labelled transitions
- a start/initial state
- a set of final states

A transducer is a transition system with:
- (input & output-)labelled transitions
- a start/initial state

NB

Acceptors accept/reject sequences of inputs. Transducers map sequences of inputs to sequences of outputs.
Summary

- Recap
- Deterministic Finite Automata
- Non-deterministic Finite Automata
- Regular languages
- Regular expressions
- Mealy machines
A deterministic finite automaton (DFA) is a deterministic, finite state acceptor.

DFAs represent “computation with finite memory”

DFAs form the backbone of most computational models
Formally, a **deterministic finite automaton (DFA)** is a tuple $(Q, \Sigma, \delta, q_0, F)$ where

- Q is a finite set of states $Q = \{q_0, q_1, q_2\}$
- Σ is the input alphabet: $\Sigma = \{0, 1\}$
- $\delta : Q \times \Sigma \to Q$ is the transition function
- $q_0 \in Q$ is the start state
- $F \subseteq Q$ is the set of final/accepting states $F = \{q_1\}$
Formally, a **deterministic finite automaton (DFA)** is a tuple \((Q, \Sigma, \delta, q_0, F)\) where

- \(Q\) is a finite set of states: \(Q = \{q_0, q_1, q_2\}\)
- \(\Sigma\) is the input alphabet: \(\Sigma = \{0, 1\}\)
- \(\delta: Q \times \Sigma \rightarrow Q\) is the transition function
- \(q_0 \in Q\) is the start state
- \(F \subseteq Q\) is the set of final/accepting states: \(F = \{q_1\}\)
Formally, a **deterministic finite automaton (DFA)** is a tuple $(Q, \Sigma, \delta, q_0, F)$ where

- Q is a finite set of states: $Q = \{q_0, q_1, q_2\}$
- Σ is the input alphabet: $\Sigma = \{0, 1\}$
- $\delta : Q \times \Sigma \rightarrow Q$ is the transition function
- $q_0 \in Q$ is the start state
- $F \subseteq Q$ is the set of final/accepting states: $F = \{q_1\}$

![Deterministic Finite Automata](image)

- $q_0 \xrightarrow{0} q_0 \xrightarrow{1} q_1 \xrightarrow{0} q_2$
Deterministic Finite Automata

\[\delta(q_0, 0) = q_0\]
\[\delta(q_0, 1) = q_1\]
\[\delta(q_1, 0) = q_2\]
\[\delta(q_1, 1) = q_1\]
\[\delta(q_2, 0) = q_1\]
\[\delta(q_2, 1) = q_1\]
Deterministic Finite Automata

\[\begin{array}{c|cc}
\delta & 0 & 1 \\
\hline
q_0 & q_0 & q_1 \\
q_1 & q_2 & q_1 \\
q_2 & q_1 & q_1 \\
\end{array}\]
Deterministic Finite Automata

Formally, a **deterministic finite automaton (DFA)** is a tuple $(Q, \Sigma, \delta, q_0, F)$ where

- Q is a finite set of states: $Q = \{q_0, q_1, q_2\}$
- Σ is the input alphabet: $\Sigma = \{0, 1\}$
- $\delta : Q \times \Sigma \rightarrow Q$ is the transition function
- $q_0 \in Q$ is the start state
- $F \subseteq Q$ is the set of final/accepting states: $F = \{q_1\}$
A DFA accepts a sequence of symbols from Σ – i.e. elements of Σ^*

Informally: A word defines a run in the DFA and the word is accepted if the run ends in a final state.
A DFA accepts a sequence of symbols from Σ – i.e. elements of Σ^*

- Start in state q_0
- Take the first symbol of w
- Repeat the following until there are no symbols left:
 - Based on the current state and current input symbol, transition to the appropriate state determined by δ
 - Move to the next symbol in w
- Accept if the process ends in a final state, otherwise reject.
A DFA accepts a sequence of symbols from Σ – i.e. elements of Σ^*

- Start in state q_0
- Take the first symbol of w
- Repeat the following until there are no symbols left:
 - Based on the current state and current input symbol, transition to the appropriate state determined by δ
 - Move to the next symbol in w
- Accept if the process ends in a final state, otherwise reject.

w: 1001
A DFA accepts a sequence of symbols from Σ – i.e. elements of Σ^*

- Start in state q_0
- Take the first symbol of w
- Repeat the following until there are no symbols left:
 - Based on the current state and current input symbol, transition to the appropriate state determined by δ
 - Move to the next symbol in w
- Accept if the process ends in a final state, otherwise reject.
A DFA accepts a sequence of symbols from Σ – i.e. elements of Σ^*

- Start in state q_0
- Take the first symbol of w
- Repeat the following until there are no symbols left:
 - Based on the current state and current input symbol, transition to the appropriate state determined by δ
 - Move to the next symbol in w
 - Accept if the process ends in a final state, otherwise reject.

w: 1001
Language of a DFA

A DFA accepts a sequence of symbols from Σ – i.e. elements of Σ^*

- Start in state q_0
- Take the first symbol of w
- Repeat the following until there are no symbols left:
 - Based on the current state and current input symbol, transition to the appropriate state determined by δ
 - Move to the next symbol in w
- Accept if the process ends in a final state, otherwise reject.

w: 1001
A DFA accepts a sequence of symbols from Σ – i.e. elements of Σ^*

- Start in state q_0
- Take the first symbol of w
- Repeat the following until there are no symbols left:
 - Based on the current state and current input symbol, transition to the appropriate state determined by δ
 - Move to the next symbol in w
- Accept if the process ends in a final state, otherwise reject.
A DFA accepts a sequence of symbols from Σ – i.e. elements of Σ^*

- Start in state q_0
- Take the first symbol of w
- Repeat the following until there are no symbols left:
 - Based on the current state and current input symbol, transition to the appropriate state determined by δ
 - Move to the next symbol in w
- Accept if the process ends in a final state, otherwise reject.
A DFA accepts a sequence of symbols from \(\Sigma \) – i.e. elements of \(\Sigma^* \)

- Start in state \(q_0 \)
- Take the first symbol of \(w \)
- Repeat the following until there are no symbols left:
 - Based on the current state and current input symbol, transition to the appropriate state determined by \(\delta \)
 - Move to the next symbol in \(w \)
- Accept if the process ends in a final state, otherwise reject.
A DFA accepts a sequence of symbols from Σ – i.e. elements of Σ^*

- Start in state q_0
- Take the first symbol of w
- Repeat the following until there are no symbols left:
 - Based on the current state and current input symbol, transition to the appropriate state determined by δ
 - Move to the next symbol in w

Accept if the process ends in a final state, otherwise reject.

w: 1001
A DFA accepts a sequence of symbols from Σ – i.e. elements of Σ^*

- Start in state q_0
- Take the first symbol of w
- Repeat the following until there are no symbols left:
 - Based on the current state and current input symbol, transition to the appropriate state determined by δ
 - Move to the next symbol in w
- Accept if the process ends in a final state, otherwise reject.
A DFA accepts a sequence of symbols from Σ – i.e. elements of Σ^*

- Start in state q_0
- Take the first symbol of w
- Repeat the following until there are no symbols left:
 - Based on the current state and current input symbol, transition to the appropriate state determined by δ
 - Move to the next symbol in w
- Accept if the process ends in a final state, otherwise reject.
A DFA accepts a sequence of symbols from Σ – i.e. elements of Σ^*

- Start in state q_0
- Take the first symbol of w
- Repeat the following until there are no symbols left:
 - Based on the current state and current input symbol, transition to the appropriate state determined by δ
 - Move to the next symbol in w
- Accept if the process ends in a final state, otherwise reject.

w: 1001
Language of a DFA

A DFA accepts a sequence of symbols from Σ – i.e. elements of Σ^*

- Start in state q_0
- Take the first symbol of w
- Repeat the following until there are no symbols left:
 - Based on the current state and current input symbol, transition to the appropriate state determined by δ
 - Move to the next symbol in w
- Accept if the process ends in a final state, otherwise reject.

w: 1001
A DFA accepts a sequence of symbols from Σ – i.e. elements of Σ^*

- Start in state q_0
- Take the first symbol of w
- Repeat the following until there are no symbols left:
 - Based on the current state and current input symbol, transition to the appropriate state determined by δ
 - Move to the next symbol in w
- Accept if the process ends in a final state, otherwise reject.
For a DFA $\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$, the language of \mathcal{A}, $L(\mathcal{A})$, is the set of words from Σ^* which are accepted by \mathcal{A}.
Language of a DFA

For a DFA $A = (Q, \Sigma, \delta, q_0, F)$, the **language of** A, $L(A)$, is the set of words from Σ^* which are accepted by A.

A language $L \subseteq \Sigma^*$ is **regular** if there is some DFA A such that $L = L(A)$.

$L(A) = \{1, 01, 11, 101, \ldots\}$
Language of a DFA

$L(A) = \{1, 01, 11, 101, \ldots\}$

For a DFA $A = (Q, \Sigma, \delta, q_0, F)$, the **language of** A, $L(A)$, is the set of words from Σ^* which are accepted by A.

A language $L \subseteq \Sigma^*$ is **regular** if there is some DFA A such that $L = L(A)$.
Language of a DFA: formally

Given a DFA $\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$ we define $L_\mathcal{A} : Q \rightarrow \Sigma^*$ inductively as follows:

- If $q \in F$ then $\lambda \in L_\mathcal{A}(q)$
- If $q \xrightarrow{a} q'$ and $w \in L_\mathcal{A}(q')$ then $aw \in L_\mathcal{A}(q)$

We then define

$$L(\mathcal{A}) = L_\mathcal{A}(q_0)$$
Language of a DFA: formally

Given a DFA $\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$ we define $L_\mathcal{A} : Q \rightarrow \Sigma^*$ inductively as follows:

- If $q \in F$ then $\lambda \in L_\mathcal{A}(q)$
- If $q \xrightarrow{a} q'$ and $w \in L_\mathcal{A}(q')$ then $aw \in L_\mathcal{A}(q)$

We then define

$$L(\mathcal{A}) = L_\mathcal{A}(q_0)$$
Examples

Example

\[A_1 \]

\[\begin{array}{c}
q_0 \\
\rightarrow \\
\begin{array}{c}
a \\
\rightarrow \\
q_1
\end{array}
\end{array} \]

\[\begin{array}{c}
b \\
\rightarrow \\
\begin{array}{c}
q_0 \\
\rightarrow \\
\begin{array}{c}
a \\
\rightarrow \\
q_1
\end{array}
\end{array}
\end{array} \]

\[L(A_1) = ? \]
Examples

Example

\[L(A_1) = \{ w \in \{a, b\}^* : w \text{ ends with } b \} \]
Examples

Example

\[A_2 \]

\[L(A_2) = ? \]
Examples

Example

$$L(A_2) = \{ w \in \{a, b\}^* : w \text{ ends with } a \} \cup \{\lambda\}$$
Examples

Example

Find A_3 such that $L(A_3) = \emptyset$

![Diagram of A_3]

Find A_4 such that $L(A_4) = \{\lambda\}$

![Diagram of A_4]
Examples

Example

Find A_3 such that $L(A_3) = \emptyset$

Find A_4 such that $L(A_4) = \{\lambda\}$
Examples

Example

Find A_3 such that $L(A_3) = \emptyset$

Find A_4 such that $L(A_4) = \{\lambda\}$

\[A_3 \]

\[A_4 \]
Example

Find A_5 such that $L(A_5) = \{ w \in \{a, b\}^* : \text{every odd symbol is } b \}$.
Example

Find A_5 such that $L(A_5) = \{ w \in \{a, b\}^* : \text{every odd symbol is } b \}$
Example

Find A_6 such that
$L(A_6) = \{ w \in \{a, b\}^* : \text{second-last symbol is } b \}$
Example

Find A_6 such that

$L(A_6) = \{ w \in \{a, b\}^* : \text{second-last symbol is } b \}$
Example

Find A_6 such that $L(A_6) = \{w \in \{a, b\}^* : \text{second-last symbol is } b\}$
Summary

- Recap
- Deterministic Finite Automata
- Non-deterministic Finite Automata
- Regular languages
- Regular expressions
- Mealy machines
A **non-deterministic finite automaton (NFA)** is a non-deterministic, finite state acceptor.

More general than DFAs: A DFA is an NFA
Formally, a **non-deterministic finite automaton (NFA)** is a tuple $(Q, \Sigma, \delta, q_0, F)$ where
- Q is a finite set of states: $Q = \{q_0, q_1, q_2\}$
- Σ is the input alphabet: $\Sigma = \{0, 1\}$
- $\delta \subseteq Q \times (\Sigma \cup \{\epsilon\}) \times Q$ is the transition relation
- $q_0 \in Q$ is the start state
- $F \subseteq Q$ is the set of final/accepting states: $F = \{q_1\}$
Formally, a **non-deterministic finite automaton (NFA)** is a tuple \((Q, \Sigma, \delta, q_0, F)\) where

- \(Q\) is a finite set of states: \(Q = \{q_0, q_1, q_2\}\)
- \(\Sigma\) is the input alphabet: \(\Sigma = \{0, 1\}\)
- \(\delta \subseteq Q \times (\Sigma \cup \{\epsilon\}) \times Q\) is the transition relation
- \(q_0 \in Q\) is the start state
- \(F \subseteq Q\) is the set of final/accepting states: \(F = \{q_1\}\)
Formally, a **non-deterministic finite automaton (NFA)** is a tuple $(Q, \Sigma, \delta, q_0, F)$ where

- Q is a finite set of states: $Q = \{q_0, q_1, q_2\}$
- Σ is the input alphabet: $\Sigma = \{0, 1\}$
- $\delta \subseteq Q \times (\Sigma \cup \{\epsilon\}) \times Q$ is the transition relation
- $q_0 \in Q$ is the start state
- $F \subseteq Q$ is the set of final/accepting states: $F = \{q_1\}$
Non-deterministic Finite Automata

\[
\delta = \begin{cases}
(q_0, 0, q_0), & (q_0, 1, q_0), & (q_0, 1, q_1), \\
(q_1, \epsilon, q_2), & (q_1, 0, q_2), & (q_1, 1, q_1), \\
(q_2, 0, q_1)
\end{cases}
\]
Non-deterministic Finite Automata

\[
\begin{array}{c|ccc}
\delta & \epsilon & 0 & 1 \\
\hline
q_0 & \emptyset & \{q_0\} & \{q_0, q_1\} \\
q_1 & \{q_2\} & \{q_2\} & \{q_1\} \\
q_2 & \emptyset & \{q_1\} & \emptyset \\
\end{array}
\]
Formally, a non-deterministic finite automaton (NFA) is a tuple $(Q, \Sigma, \delta, q_0, F)$ where

- Q is a finite set of states: $Q = \{q_0, q_1, q_2\}$
- Σ is the input alphabet: $\Sigma = \{0, 1\}$
- $\delta \subseteq Q \times (\Sigma \cup \{\epsilon\}) \times Q$ is the transition relation
- $q_0 \in Q$ is the start state
- $F \subseteq Q$ is the set of final/accepting states: $F = \{q_1\}$
An NFA accepts a sequence of symbols from Σ – i.e. elements of Σ^*

Informally: A word defines several runs in the NFA and the word is accepted if at least one run ends in a final state.

Note 1: Runs can end prematurely (these don’t count)

Note 2: An NFA will always “choose wisely”
Language of an NFA

Start in state q_0

Take the first symbol of w

Repeat until there are no symbols left or no transitions available:

- Based on the current state and current input symbol or ϵ, transition to any state determined by δ
- If not an ϵ-transition, move to the next symbol in w

Accept if there are no symbols left and the process ends in a final state, otherwise reject.

w: 1000
Language of an NFA

Start in state q_0

Take the first symbol of w

Repeat until there are no symbols left or no transitions available:

- Based on the current state and current input symbol or ϵ, transition to any state determined by δ
- If not an ϵ-transition, move to the next symbol in w

Accept if there are no symbols left and the process ends in a final state, otherwise reject.
Start in state q_0

Take the first symbol of w

Repeat until there are no symbols left or no transitions available:

- Based on the current state and current input symbol or ϵ, transition to any state determined by δ
- If not an ϵ-transition, move to the next symbol in w

Accept if there are no symbols left and the process ends in a final state, otherwise reject.
Language of an NFA

Start in state q_0

Take the first symbol of w

Repeat until there are no symbols left or no transitions available:

- Based on the current state and current input symbol or ϵ, transition to any state determined by δ
- If not an ϵ-transition, move to the next symbol in w

Accept if there are no symbols left and the process ends in a final state, otherwise reject.
Language of an NFA

Start in state q_0

Take the first symbol of w

Repeat until there are no symbols left or no transitions available:

- Based on the current state and current input symbol or ϵ, transition to any state determined by δ
- If not an ϵ-transition, move to the next symbol in w

Accept if there are no symbols left and the process ends in a final state, otherwise reject.
Language of an NFA

- Start in state q_0
- Take the first symbol of w
- Repeat until there are no symbols left or no transitions available:
 - Based on the current state and current input symbol or ϵ, transition to any state determined by δ
 - If not an ϵ-transition, move to the next symbol in w
- Accept if there are no symbols left and the process ends in a final state, otherwise reject.

w: 1000
Language of an NFA

Start in state q_0

Take the first symbol of w

Repeat until there are no symbols left or no transitions available:

- Based on the current state and current input symbol or ϵ, transition to any state determined by δ
- If not an ϵ-transition, move to the next symbol in w

Accept if there are no symbols left and the process ends in a final state, otherwise reject.
Language of an NFA

Start in state q_0

Take the first symbol of w

Repeat until there are no symbols left or no transitions available:

- Based on the current state and current input symbol or ϵ, transition to any state determined by δ
- If not an ϵ-transition, move to the next symbol in w

Accept if there are no symbols left and the process ends in a final state, otherwise reject.

w: 1000
Start in state q_0

Take the first symbol of w

Repeat until there are no symbols left or no transitions available:

- Based on the current state and current input symbol or ϵ, transition to any state determined by δ
- If not an ϵ-transition, move to the next symbol in w

Accept if there are no symbols left and the process ends in a final state, otherwise reject.
Language of an NFA

Start in state q_0

Take the first symbol of w

Repeat until there are no symbols left or no transitions available:

- Based on the current state and current input symbol or ϵ, transition to any state determined by δ
- If not an ϵ-transition, move to the next symbol in w

Accept if there are no symbols left and the process ends in a final state, otherwise reject.

w: 1000
Language of an NFA

Start in state q_0

Take the first symbol of w

Repeat until there are no symbols left or no transitions available:

- Based on the current state and current input symbol or ϵ, transition to any state determined by δ
- If not an ϵ-transition, move to the next symbol in w

Accept if there are no symbols left and the process ends in a final state, otherwise reject.

w: 1000
Language of an NFA

Start in state q_0

Take the first symbol of w

Repeat until there are no symbols left or no transitions available:
 - Based on the current state and current input symbol or ϵ, transition to any state determined by δ
 - If not an ϵ-transition, move to the next symbol in w

Accept if there are no symbols left and the process ends in a final state, otherwise reject.
Language of an NFA

- Start in state q_0
- Take the first symbol of w
- Repeat until there are no symbols left or no transitions available:
 - Based on the current state and current input symbol or ϵ, transition to any state determined by δ
 - If not an ϵ-transition, move to the next symbol in w
- Accept if there are no symbols left and the process ends in a final state, otherwise reject.
Language of an NFA

- Start in state q_0
- Take the first symbol of w
- Repeat until there are no symbols left or no transitions available:
 - Based on the current state and current input symbol or ϵ, transition to any state determined by δ
 - If not an ϵ-transition, move to the next symbol in w
- Accept if there are no symbols left and the process ends in a final state, otherwise reject.

w: 1000
Language of an NFA

Start in state q_0

Take the first symbol of w

Repeat until there are no symbols left or no transitions available:

- Based on the current state and current input symbol or ϵ, transition to any state determined by δ
- If not an ϵ-transition, move to the next symbol in w

Accept if there are no symbols left and the process ends in a final state, otherwise reject.
Language of an NFA

Start in state q_0

Take the first symbol of w

Repeat until there are no symbols left or no transitions available:

- Based on the current state and current input symbol or ϵ, transition to any state determined by δ
- If not an ϵ-transition, move to the next symbol in w

Accept if there are no symbols left and the process ends in a final state, otherwise reject.

w: 1000 ✓
For an NFA $\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$, the language of \mathcal{A}, $L(\mathcal{A})$, is the set of words from Σ^* which are accepted by \mathcal{A}.
For an NFA $A = (Q, \Sigma, \delta, q_0, F)$, the **language of A, $L(A)$**, is the set of words from Σ^* which are accepted by A.

$L(A) = \{1, 01, 11, 10, \ldots\}$
Language of an NFA: formally

Given an NFA $A = (Q, \Sigma, \delta, q_0, F)$ we define $L_A : Q \rightarrow \Sigma^*$ inductively as follows:

- If $q \in F$ then $\lambda \in L_A(q)$
- If $q \overset{a}{\rightarrow} q'$ and $w \in L_A(q')$ then $aw \in L_A(q)$
- If $q \overset{\epsilon}{\rightarrow} q'$ and $w \in L_A(q')$ then $w \in L_A(q)$

We then define

$$L(A) = L_A(q_0)$$
Language of an NFA: formally

Given an NFA $A = (Q, \Sigma, \delta, q_0, F)$ we define $L_A : Q \rightarrow \Sigma^*$ inductively as follows:

1. If $q \in F$ then $\lambda \in L_A(q)$
2. If $q \xrightarrow{a} q'$ and $w \in L_A(q')$ then $aw \in L_A(q)$
3. If $q \xrightarrow{\epsilon} q'$ and $w \in L_A(q')$ then $w \in L_A(q)$

We then define

$$L(A) = L_A(q_0)$$
Example

\mathcal{B}_1

$L(\mathcal{B}_1) = ?$
Examples

Example

\[L(B_1) = \{ w \in \{a, b\}^* : w \text{ ends with } b \} \]
Examples

Example

$$L(B_2) = ?$$
Examples

Example

$L(B_2) = \{a, b\}^*$
Examples

Example

Find B_3 such that $L(B_3) = \emptyset$

Find B_4 such that $L(B_4) = \{\lambda\}$
Examples

Example

Find B_3 such that $L(B_3) = \emptyset$

Find B_4 such that $L(B_4) = \{\lambda\}$
Examples

Example

Find \mathcal{B}_3 such that $L(\mathcal{B}_3) = \emptyset$

\mathcal{B}_3

Find \mathcal{B}_4 such that $L(\mathcal{B}_4) = \{\lambda\}$

\mathcal{B}_4
Example

Find B_5 such that $L(B_5) = \{w \in \{a, b\}^* : \text{second-last symbol is } b\}$
Example

Find \mathcal{B}_5 such that $L(\mathcal{B}_5) = \{ w \in \{a, b\}^* : \text{second-last symbol is } b \}$
NFAs vs DFAs

Clearly for any DFA A there is an NFA B such that $L(A) = L(B)$.

Theorem

For any NFA B there is a DFA A such that $L(A) = L(B)$.

Proof sketch: (Subset construction)

Given $B = (Q, \Sigma, \delta, q_0, F)$, construct $A = (Q', \Sigma, \delta', q'_0, F')$ as follows:

- $Q' = \text{Pow}(Q)$
- $\delta'(X, a) = \{ q' \in Q : \exists q \in X, q'' \in Q. q \xrightarrow{a} q'' \xrightarrow{*} q' \}$
- $q'_0 = \{ q_0 \}$
- $F' = \{ X \in Q' : X \cap F \neq \emptyset \}$

Intuitively: A keeps track of all the possible states B could be in after seeing a given sequence of symbols.
NFAs vs DFAs

Clearly for any DFA A there is an NFA B such that $L(A) = L(B)$.

Theorem

For any NFA B there is a DFA A such that $L(A) = L(B)$.

Proof sketch: (Subset construction)
Given $B = (Q, \Sigma, \delta, q_0, F)$, construct $A = (Q', \Sigma, \delta', q'_0, F')$ as follows:

- $Q' = \text{Pow}(Q)$
- $\delta'(X, a) = \{ q' \in Q : \exists q \in X, q'' \in Q. q \xrightarrow{a} q'' \xrightarrow{*} q' \}$
- $q'_0 = \{ q_0 \}$
- $F' = \{ X \in Q' : X \cap F \neq \emptyset \}$

Intuitively: A keeps track of all the possible states B could be in after seeing a given sequence of symbols.
NFAs vs DFAs

Clearly for any DFA A there is an NFA B such that $L(A) = L(B)$.

Theorem

For any NFA B there is a DFA A such that $L(A) = L(B)$.

Proof sketch: (Subset construction)

Given $B = (Q, \Sigma, \delta, q_0, F)$, construct $A = (Q', \Sigma, \delta', q'_0, F')$ as follows:

- $Q' = \text{Pow}(Q)$
- $\delta'(X, a) = \{ q' \in Q : \exists q \in X, q'' \in Q. q \xrightarrow{a} q'' \xrightarrow{\epsilon}^* q' \}$
- $q'_0 = \{ q_0 \}$
- $F' = \{ X \in Q' : X \cap F \neq \emptyset \}$

Intuitively: A keeps track of all the possible states B could be in after seeing a given sequence of symbols.
NFA to DFA Example

Example

\[\mathcal{N}_5 \]

\[\begin{array}{c|cc}
\delta' & a & b \\
\hline
\emptyset & \emptyset & \emptyset \\
\{q_0\} & \{q_0\} & \{q_0\} \\
\{q_1\} & \{q_1\} & \{q_1\} \\
\{q_2\} & \{q_2\} & \{q_2\} \\
\{q_0, q_1\} & \{q_0, q_1\} & \{q_0, q_1\} \\
\{q_0, q_2\} & \{q_0, q_2\} & \{q_0, q_2\} \\
\{q_1, q_2\} & \{q_1, q_2\} & \{q_1, q_2\} \\
\{q_0, q_1, q_2\} & \{q_0, q_1, q_2\} & \{q_0, q_1, q_2\} \\
\end{array} \]
NFA to DFA Example

Example

\[B_5 \]

\[
\begin{array}{c}
\delta' \\
\emptyset \\
\{ q_0 \} \\
\{ q_1 \} \\
\{ q_2 \} \\
\{ q_0, q_1 \} \\
\{ q_0, q_2 \} \\
\{ q_1, q_2 \} \\
\{ q_0, q_1, q_2 \}
\end{array}
\begin{array}{ccc}
a \\
\{ q_0 \} \\
\{ q_2 \} \\
\{ q_0, q_1 \} \\
\{ q_0 \} \\
\{ q_2 \} \\
\{ q_0, q_1 \} \\
\{ q_0, q_2 \} \\
\{ q_0, q_1, q_2 \}
\end{array}
\begin{array}{ccc}
b \\
\{ q_0, q_1 \} \\
\{ q_2 \} \\
\{ q_0, q_1, q_2 \} \\
\{ q_0, q_2 \} \\
\{ q_2 \} \\
\{ q_0, q_1 \} \\
\{ q_0, q_2 \} \\
\{ q_0, q_1, q_2 \}
\end{array}\]
NFA to DFA Example

Example

\[\mathcal{B}_5\]

\begin{array}{cccc}
\delta' & a, b & b & a, b \\
\emptyset & \emptyset & \emptyset & \emptyset \\
\{q_0\} & \{q_0\} & \{q_0, q_1\} & \\
\{q_1\} & \{q_2\} & \{q_2\} & \\
\{q_2\} & \emptyset & \emptyset & \\
\{q_0, q_1\} & \{q_0, q_2\} & \{q_0, q_1, q_2\} & \\
\{q_0, q_2\} & \{q_0\} & \{q_0, q_1\} & \\
\{q_1, q_2\} & \{q_2\} & \{q_2\} & \\
\{q_0, q_1, q_2\} & \{q_0, q_2\} & \{q_0, q_1, q_2\} & \\
\end{array}
Example

\[\mathcal{B}_5 \]

\[q_0 \quad \xrightarrow{a, b} \quad q_1 \quad \xrightarrow{a, b} \quad q_2 \]

\[
\begin{array}{c|cc}
\delta' & a & b \\
\hline
\emptyset & \emptyset & \emptyset \\
\{q_0\} & \{q_0\} & \{q_0, q_1\} \\
\{q_1\} & \{q_2\} & \{q_2\} \\
\{q_2\} & \emptyset & \emptyset \\
\{q_0, q_1\} & \{q_0, q_2\} & \{q_0, q_1, q_2\} \\
\{q_0, q_2\} & \{q_0\} & \{q_0, q_1\} \\
\{q_1, q_2\} & \{q_2\} & \{q_2\} \\
\{q_0, q_1, q_2\} & \{q_0, q_2\} & \{q_0, q_1, q_2\}
\end{array}
\]
NFA to DFA Example

Example

\[B_5 \]

\[\begin{array}{c|cc}
\delta' & a & b \\
\hline
\emptyset & \emptyset & \emptyset \\
\{q_0\} & \{q_0\} & \{q_0, q_1\} \\
\{q_1\} & \{q_2\} & \{q_2\} \\
\{q_2\} & \emptyset & \emptyset \\
\{q_0, q_1\} & \{q_0, q_2\} & \{q_0, q_1, q_2\} \\
\{q_0, q_2\} & \{q_0\} & \{q_0, q_1\} \\
\{q_1, q_2\} & \{q_2\} & \{q_2\} \\
\{q_0, q_1, q_2\} & \{q_0, q_2\} & \{q_0, q_1, q_2\} \\
\end{array} \]
NFA to DFA Example

Example

\[B_5\]

\[\begin{array}{ccc}
q_0 & b & q_1 \\
\delta' & & a, b \\
\emptyset & \emptyset & \emptyset \\
\{q_0\} & \{q_0\} & \{q_0, q_1\} \\
\{q_1\} & \{q_2\} & \{q_2\} \\
\{q_2\} & \emptyset & \emptyset \\
\{q_0, q_1\} & \{q_0, q_2\} & \{q_0, q_1, q_2\} \\
\{q_0, q_2\} & \{q_0\} & \{q_0, q_1\} \\
\{q_1, q_2\} & \{q_2\} & \{q_2\} \\
\{q_0, q_1, q_2\} & \{q_0, q_2\} & \{q_0, q_1, q_2\}
\end{array}\]
NFA to DFA Example

Example

- **States:** $B_5 = \{q_0, q_1, q_2\}$
- **Transitions:**
 - $q_0 \xrightarrow{a,b} q_1$
 - $q_1 \xrightarrow{a,b} q_2$
 - $q_0 \xrightarrow{b} q_0$

Transition Table:

<table>
<thead>
<tr>
<th>δ'</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>\emptyset</td>
<td>\emptyset</td>
<td>\emptyset</td>
</tr>
<tr>
<td>${q_0}$</td>
<td>${q_0}$</td>
<td>${q_0, q_1}$</td>
</tr>
<tr>
<td>${q_1}$</td>
<td>${q_2}$</td>
<td>${q_2}$</td>
</tr>
<tr>
<td>${q_2}$</td>
<td>\emptyset</td>
<td>\emptyset</td>
</tr>
<tr>
<td>${q_0, q_1}$</td>
<td>${q_0, q_2}$</td>
<td>${q_0, q_1, q_2}$</td>
</tr>
<tr>
<td>${q_0, q_2}$</td>
<td>${q_0}$</td>
<td>${q_0, q_1}$</td>
</tr>
<tr>
<td>${q_1, q_2}$</td>
<td>${q_2}$</td>
<td>${q_2}$</td>
</tr>
<tr>
<td>${q_0, q_1, q_2}$</td>
<td>${q_0, q_2}$</td>
<td>${q_0, q_1, q_2}$</td>
</tr>
</tbody>
</table>
NFA to DFA Example

Example

\(B_5 \)

\[q_0 \rightarrow_{a, b} q_1 \rightarrow_{a, b} q_2 \]

\[
\begin{array}{c|cc}
\delta' & a & b \\
\hline
\emptyset & \emptyset & \emptyset \\
\{ q_0 \} & \{ q_0 \} & \{ q_0, q_1 \} \\
\{ q_1 \} & \{ q_2 \} & \{ q_2 \} \\
\{ q_2 \} & \emptyset & \emptyset \\
\{ q_0, q_1 \} & \{ q_0, q_2 \} & \{ q_0, q_1, q_2 \} \\
\{ q_0, q_2 \} & \{ q_0 \} & \{ q_0, q_1 \} \\
\{ q_1, q_2 \} & \{ q_2 \} & \{ q_2 \} \\
\{ q_0, q_1, q_2 \} & \{ q_0, q_2 \} & \{ q_0, q_1, q_2 \}
\end{array}
\]
Example

NFA to DFA Example

\[\delta' \]

<table>
<thead>
<tr>
<th></th>
<th>(a)</th>
<th>(b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\emptyset)</td>
<td>(\emptyset)</td>
<td>(\emptyset)</td>
</tr>
<tr>
<td>({ q_0 })</td>
<td>({ q_0 })</td>
<td>({ q_0, q_1 })</td>
</tr>
<tr>
<td>({ q_1 })</td>
<td>({ q_2 })</td>
<td>({ q_2 })</td>
</tr>
<tr>
<td>({ q_2 })</td>
<td>(\emptyset)</td>
<td>(\emptyset)</td>
</tr>
<tr>
<td>({ q_0, q_1 })</td>
<td>({ q_0, q_2 })</td>
<td>({ q_0, q_1, q_2 })</td>
</tr>
<tr>
<td>({ q_0, q_2 })</td>
<td>({ q_0 })</td>
<td>({ q_0, q_1 })</td>
</tr>
<tr>
<td>({ q_1, q_2 })</td>
<td>({ q_2 })</td>
<td>({ q_2 })</td>
</tr>
<tr>
<td>({ q_0, q_1, q_2 })</td>
<td>({ q_0, q_2 })</td>
<td>({ q_0, q_1, q_2 })</td>
</tr>
</tbody>
</table>
NFA to DFA Example

Example

\[\delta' \]

<table>
<thead>
<tr>
<th>State</th>
<th>(a)</th>
<th>(b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\emptyset)</td>
<td>(\emptyset)</td>
<td>(\emptyset)</td>
</tr>
<tr>
<td>({ q_0 })</td>
<td>({ q_0 })</td>
<td>({ q_0, q_1 })</td>
</tr>
<tr>
<td>({ q_1 })</td>
<td>({ q_2 })</td>
<td>({ q_2 })</td>
</tr>
<tr>
<td>({ q_2 })</td>
<td>(\emptyset)</td>
<td>(\emptyset)</td>
</tr>
<tr>
<td>({ q_0, q_1 })</td>
<td>({ q_0, q_2 })</td>
<td>({ q_0, q_1, q_2 })</td>
</tr>
<tr>
<td>({ q_0, q_2 })</td>
<td>({ q_0 })</td>
<td>({ q_0, q_1 })</td>
</tr>
<tr>
<td>({ q_1, q_2 })</td>
<td>({ q_2 })</td>
<td>({ q_2 })</td>
</tr>
<tr>
<td>({ q_0, q_1, q_2 })</td>
<td>({ q_0, q_2 })</td>
<td>({ q_0, q_1, q_2 })</td>
</tr>
</tbody>
</table>
NFA to DFA Example

Example

\[B_5 \]

\[
\begin{array}{c}
q_0 \quad b \quad q_1 \quad a, b \quad q_2 \\
\end{array}
\]

\[
\begin{array}{c|cc}
\delta' & a & b \\
\hline
\emptyset & A & A \\
\{q_0\} & B & E \\
\{q_1\} & C & D \\
\{q_2\} & D & A \\
\{q_0, q_1\} & E & H \\
\{q_0, q_2\} & F & E \\
\{q_1, q_2\} & G & D \\
\{q_0, q_1, q_2\} & H & H \\
\end{array}
\]
NFA to DFA Example

Example

\[B_5 \]

\[\begin{array}{c}
q_0 \rightarrow b \rightarrow q_1 \rightarrow a, b \rightarrow q_2 \\
\end{array} \]

\[\begin{array}{c|cc}
\delta' & a & b \\
\hline
\emptyset & A & A \\
\{ q_0 \} & B & E \\
\{ q_1 \} & C & D \\
\{ q_2 \} & D & A \\
\{ q_0, q_1 \} & E & F \\
\{ q_0, q_2 \} & F & E \\
\{ q_1, q_2 \} & G & D \\
\{ q_0, q_1, q_2 \} & H & F \\
\end{array} \]
NFA to DFA Example

Example

\[B_5 \]

\[\delta' \]

<table>
<thead>
<tr>
<th>{q_0}</th>
<th>{q_1}</th>
<th>{q_2}</th>
<th>{q_0, q_1}</th>
<th>{q_0, q_2}</th>
<th>{q_1, q_2}</th>
<th>{q_0, q_1, q_2}</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td>F</td>
<td>G</td>
</tr>
<tr>
<td>A</td>
<td>B</td>
<td>D</td>
<td>E</td>
<td>B</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td>A</td>
<td>B</td>
<td>D</td>
<td>E</td>
<td>B</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td>A</td>
<td>B</td>
<td>D</td>
<td>E</td>
<td>B</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td>A</td>
<td>B</td>
<td>D</td>
<td>E</td>
<td>B</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td>A</td>
<td>B</td>
<td>D</td>
<td>E</td>
<td>B</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td>A</td>
<td>B</td>
<td>D</td>
<td>E</td>
<td>B</td>
<td>D</td>
<td>D</td>
</tr>
</tbody>
</table>

\[a, b \]

\[q_0 \rightarrow b \rightarrow q_1 \rightarrow a, b \rightarrow q_2 \]
NFA to DFA Example

Example

Transition Table:

- B_5: a, b

Diagram:

- q_0 transitions to q_1 on b and to q_2 on a, b
- B transitions to E on a, b
- F transitions to H on a, b
- G transitions to D on a, b
- A transitions to itself on a, b

States:

- q_0, q_1, q_2
- B, E, F, H, G, D, A
NFAs vs DFAs

Theorem

- For any NFA with n states there exists a DFA with at most 2^n states that accepts the same language.
- There exist NFAs with n states such that the smallest DFA that accepts the same language has at least 2^n states.
Summary

- Recap
- Deterministic Finite Automata
- Non-deterministic Finite Automata
- Regular languages
- Regular expressions
- Mealy machines
Regular languages

A language $L \subseteq \Sigma^*$ is regular if there is some DFA A such that $L = L(A)$.

Equivalently, there is some NFA B such that $L = L(B)$.
A language $L \subseteq \Sigma^*$ is **regular** if there is some DFA A such that $L = L(A)$

Equivalently, there is some NFA B such that $L = L(B)$
Non-regular languages

Are there languages which are not regular? Yes

“Simple” counting argument: there are uncountably many languages, and only countably many DFAs

An example of a non-regular language: \(\{0^n 1^n : n \in \mathbb{N}\} \)

Intuitively: need arbitrary large memory to “remember” the number of 0’s
Non-regular languages

Are there languages which are not regular? Yes

“Simple” counting argument: there are uncountably many languages, and only countably many DFAs

An example of a non-regular language: \(\{0^n1^n : n \in \mathbb{N}\} \)

Intuitively: need arbitrary large memory to “remember” the number of 0’s
Non-regular languages

Are there languages which are not regular? Yes

“Simple” counting argument: there are uncountably many languages, and only countably many DFAs

An example of a non-regular language: \(\{0^n1^n : n \in \mathbb{N}\} \)
Intuitively: need arbitrary large memory to “remember” the number of 0’s
Complementation

Theorem

If L is a regular language then $L^c = \Sigma^* \setminus L$ is a regular language.

Proof:

- Let $A = (Q, \Sigma, \delta, q_0, F)$ be a DFA such that $L(A) = L$.
- Consider $A' = (Q, \Sigma, \delta, q_0, Q \setminus F)$.
- For any word $w \in \Sigma^*$, the corresponding run in A is unique, so:
 - If $w \in L(A)$ then $w \notin L(A')$, and
 - If $w \notin L(A)$ then $w \in L(A')$.
- Therefore $L(A') = \Sigma^* \setminus L(A) = L^c$.

NB

This argument does not apply for NFAs (see B_1 and B_2).
Complementation

Theorem

If L is a regular language then $L^c = \Sigma^* \setminus L$ is a regular language.

Proof:

- Let $\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$ be a DFA such that $L(\mathcal{A}) = L$
- Consider $\mathcal{A}' = (Q, \Sigma, \delta, q_0, Q \setminus F)$
- For any word $w \in \Sigma^*$, the corresponding run in \mathcal{A} is unique, so:
 - If $w \in L(\mathcal{A})$ then $w \notin L(\mathcal{A}')$, and
 - If $w \notin L(\mathcal{A})$ then $w \in L(\mathcal{A}')$,
- Therefore $L(\mathcal{A}') = \Sigma^* \setminus L(\mathcal{A}) = L^c$

NB

This argument does not apply for NFAs (see B_1 and B_2)
Complementation

Theorem

If L is a regular language then $L^c = \Sigma^* \setminus L$ is a regular language.

Proof:

- Let $A = (Q, \Sigma, \delta, q_0, F)$ be a DFA such that $L(A) = L$
- Consider $A' = (Q, \Sigma, \delta, q_0, Q \setminus F)$
- For any word $w \in \Sigma^*$, the corresponding run in A is unique, so:
 - If $w \in L(A)$ then $w \notin L(A')$, and
 - If $w \notin L(A)$ then $w \in L(A')$,
- Therefore $L(A') = \Sigma^* \setminus L(A) = L^c$

NB

This argument does not apply for NFAs (see B_1 and B_2)
Complementation

Theorem

If L is a regular language then $L^c = \Sigma^* \setminus L$ is a regular language.

Proof:

- Let $A = (Q, \Sigma, \delta, q_0, F)$ be a DFA such that $L(A) = L$
- Consider $A' = (Q, \Sigma, \delta, q_0, Q \setminus F)$
- For any word $w \in \Sigma^*$, the corresponding run in A is unique, so:
 - If $w \in L(A)$ then $w \notin L(A')$, and
 - If $w \notin L(A)$ then $w \in L(A')$,
- Therefore $L(A') = \Sigma^* \setminus L(A) = L^c$

NB

This argument does not apply for NFAs (see B_1 and B_2)
Complementation

Theorem

If \(L \) is a regular language then \(L^c = \Sigma^* \setminus L \) is a regular language.

Proof:

- Let \(A = (Q, \Sigma, \delta, q_0, F) \) be a DFA such that \(L(A) = L \)
- Consider \(A' = (Q, \Sigma, \delta, q_0, Q \setminus F) \)
- For any word \(w \in \Sigma^* \), the corresponding run in \(A \) is unique, so:
 - If \(w \in L(A) \) then \(w \notin L(A') \), and
 - If \(w \notin L(A) \) then \(w \in L(A') \),
- Therefore \(L(A') = \Sigma^* \setminus L(A) = L^c \)

NB

This argument does not apply for NFAs (see \(B_1 \) and \(B_2 \))
Theorem
If L is a regular language then $L^c = \Sigma^* \setminus L$ is a regular language.

Proof:
- Let $A = (Q, \Sigma, \delta, q_0, F)$ be a DFA such that $L(A) = L$
- Consider $A' = (Q, \Sigma, \delta, q_0, Q \setminus F)$
- For any word $w \in \Sigma^*$, the corresponding run in A is unique, so:
 - If $w \in L(A)$ then $w \notin L(A')$, and
 - If $w \notin L(A)$ then $w \in L(A')$,
- Therefore $L(A') = \Sigma^* \setminus L(A) = L^c$

NB
This argument does not apply for NFAs (see B_1 and B_2)
Theorem

If L_1 *and* L_2 *are regular languages, then* $L_1 \cup L_2$ *is regular.*

Proof:

- Let B_1 and B_2 be NFAs such that $L(B_1) = L_1$ and $L(B_2) = L_2$.
- Construct an NFA B by having a new start state with ϵ-transitions to the start states of B_1 and B_2.
- Consider $w \in L_1 \cup L_2$:
 - If $w \in L_1$ then there is a run in B_1, and hence in B, which ends in a final state.
 - If $w \in L_2$ then there is a run in B_2, and hence in B, which ends in a final state.
- In either case $w \in L(B)$.
- Conversely, any accepting run in B will be either an accepting run in B_1 or in B_2; so if $w \in L(B)$ then $w \in L_1 \cup L_2$.
Theorem

If L_1 and L_2 are regular languages, then $L_1 \cup L_2$ is regular.

Proof:

- Let B_1 and B_2 be NFAs such that $L(B_1) = L_1$ and $L(B_2) = L_2$
- Construct an NFA B by having a new start state with ϵ-transitions to the start states of B_1 and B_2
- Consider $w \in L_1 \cup L_2$:
 - If $w \in L_1$ then there is a run in B_1, and hence in B, which ends in a final state
 - If $w \in L_2$ then there is a run in B_2, and hence in B, which ends in a final state
 - In either case $w \in L(B)$
- Conversely, any accepting run in B will be either an accepting run in B_1 or in B_2; so if $w \in L(B)$ then $w \in L_1 \cup L_2$
If \(L_1 \) and \(L_2 \) are regular languages, then \(L_1 \cup L_2 \) is regular.

Proof:

- Let \(B_1 \) and \(B_2 \) be NFAs such that \(L(B_1) = L_1 \) and \(L(B_2) = L_2 \).
- Construct an NFA \(B \) by having a new start state with \(\epsilon \)-transitions to the start states of \(B_1 \) and \(B_2 \).
- Consider \(w \in L_1 \cup L_2 \):
 - If \(w \in L_1 \) then there is a run in \(B_1 \), and hence in \(B \), which ends in a final state.
 - If \(w \in L_2 \) then there is a run in \(B_2 \), and hence in \(B \), which ends in a final state.
 - In either case, \(w \in L(B) \).
- Conversely, any accepting run in \(B \) will be either an accepting run in \(B_1 \) or in \(B_2 \); so if \(w \in L(B) \) then \(w \in L_1 \cup L_2 \).
Theorem

If \(L_1 \) and \(L_2 \) are regular languages, then \(L_1 \cup L_2 \) is regular.

Proof:

- Let \(B_1 \) and \(B_2 \) be NFAs such that \(L(B_1) = L_1 \) and \(L(B_2) = L_2 \).
- Construct an NFA \(B \) by having a new start state with \(\epsilon \)-transitions to the start states of \(B_1 \) and \(B_2 \).
- Consider \(w \in L_1 \cup L_2 \):
 - If \(w \in L_1 \) then there is a run in \(B_1 \), and hence in \(B \), which ends in a final state.
 - If \(w \in L_2 \) then there is a run in \(B_2 \), and hence in \(B \), which ends in a final state.
 - In either case \(w \in L(B) \).
- Conversely, any accepting run in \(B \) will be either an accepting run in \(B_1 \) or in \(B_2 \); so if \(w \in L(B) \) then \(w \in L_1 \cup L_2 \).
Union

Theorem

If L_1 *and* L_2 *are regular languages, then* $L_1 \cup L_2$ *is regular.*

Proof:

- Let \mathcal{B}_1 and \mathcal{B}_2 be NFAs such that $L(\mathcal{B}_1) = L_1$ and $L(\mathcal{B}_2) = L_2$.
- Construct an NFA \mathcal{B} by having a new start state with ϵ-transitions to the start states of \mathcal{B}_1 and \mathcal{B}_2.
- Consider $w \in L_1 \cup L_2$:
 - If $w \in L_1$ then there is a run in \mathcal{B}_1, and hence in \mathcal{B}, which ends in a final state.
 - If $w \in L_2$ then there is a run in \mathcal{B}_2, and hence in \mathcal{B}, which ends in a final state.
 - In either case $w \in L(\mathcal{B})$.
- Conversely, any accepting run in \mathcal{B} will be either an accepting run in \mathcal{B}_1 or in \mathcal{B}_2; so if $w \in L(\mathcal{B})$ then $w \in L_1 \cup L_2$.
Intersection

Theorem

If L_1 and L_2 are regular languages, then $L_1 \cap L_2$ is regular.

Proof:

\[L_1 \cap L_2 = (L_1^c \cup L_2^c)^c \]
Intersection

Theorem

If L_1 and L_2 are regular languages, then $L_1 \cap L_2$ is regular.

Proof:

$$L_1 \cap L_2 = (L_1^c \cup L_2^c)^c$$
Concatenation

Recall for languages X and Y: $X \cdot Y = \{xy : x \in X, y \in Y\}$

Theorem

If L_1 and L_2 are regular languages, then $L_1 \cdot L_2$ is regular.

Proof:

- Let B_1 and B_2 be NFAs such that $L(B_1) = L_1$ and $L(B_2) = L_2$.
- Construct an NFA B by adding ϵ-transitions from the final states of B_1 to the start state of B_2. Let the start state of B be the start state of B_1; and let the final states of B be the final states of B_2.
- Any word in $L_1 \cdot L_2$ can be written as wv with $w \in L_1$ and $v \in L_2$. w has an accepting run in B_1 and v has an accepting run in B_2, so wv has an accepting run in B.
- Conversely, any word w with an accepting run in B can be broken up into an accepting run in B_1 followed by an accepting run in B_2. Thus w can be broken up into two words $w = xy$ where $x \in L_1$ and $y \in L_2$.
Concatenation

Recall for languages \(X \) and \(Y \):
\[
X \cdot Y = \{xy : x \in X, y \in Y\}
\]

Theorem

If \(L_1 \) and \(L_2 \) are regular languages, then \(L_1 \cdot L_2 \) is regular.

Proof:

- Let \(B_1 \) and \(B_2 \) be NFAs such that \(L(B_1) = L_1 \) and \(L(B_2) = L_2 \).
- Construct an NFA \(B \) by adding \(\epsilon \)-transitions from the final states of \(B_1 \) to the start state of \(B_2 \). Let the start state of \(B \) be the start state of \(B_1 \); and let the final states of \(B \) be the final states of \(B_2 \).
- Any word in \(L_1 \cdot L_2 \) can be written as \(wv \) with \(w \in L_1 \) and \(v \in L_2 \). \(w \) has an accepting run in \(B_1 \) and \(v \) has an accepting run in \(B_2 \), so \(wv \) has an accepting run in \(B \).
- Conversely, any word \(w \) with an accepting run in \(B \) can be broken up into an accepting run in \(B_1 \) followed by an accepting run in \(B_2 \). Thus \(w \) can be broken up into two words \(w = xy \) where \(x \in L_1 \) and \(y \in L_2 \).
Concatenation

Recall for languages X and Y: $X \cdot Y = \{ xy : x \in X, y \in Y \}$

Theorem

If L_1 and L_2 are regular languages, then $L_1 \cdot L_2$ is regular.

Proof:

- Let B_1 and B_2 be NFAs such that $L(B_1) = L_1$ and $L(B_2) = L_2$.
- Construct an NFA B by adding ϵ-transitions from the final states of B_1 to the start state of B_2. Let the start state of B be the start state of B_1; and let the final states of B be the final states of B_2.
- Any word in $L_1 \cdot L_2$ can be written as wv with $w \in L_1$ and $v \in L_2$. w has an accepting run in B_1 and v has an accepting run in B_2, so wv has an accepting run in B.
- Conversely, any word w with an accepting run in B can be broken up into an accepting run in B_1 followed by an accepting run in B_2. Thus w can be broken up into two words $w = xy$ where $x \in L_1$ and $y \in L_2$.
Concatenation

Recall for languages X and Y: $X \cdot Y = \{xy : x \in X, y \in Y\}$

Theorem

If L_1 and L_2 are regular languages, then $L_1 \cdot L_2$ is regular.

Proof:

- Let B_1 and B_2 be NFAs such that $L(B_1) = L_1$ and $L(B_2) = L_2$.
- Construct an NFA B by adding ϵ-transitions from the final states of B_1 to the start state of B_2. Let the start state of B be the start state of B_1; and let the final states of B be the final states of B_2.
- Any word in $L_1 \cdot L_2$ can be written as wv with $w \in L_1$ and $v \in L_2$. w has an accepting run in B_1 and v has an accepting run in B_2, so wv has an accepting run in B.
- Conversely, any word w with an accepting run in B can be broken up into an accepting run in B_1 followed by an accepting run in B_2. Thus w can be broken up into two words $w = xy$ where $x \in L_1$ and $y \in L_2$.

Concatenation

Recall for languages X and Y: $X \cdot Y = \{xy : x \in X, y \in Y\}$

Theorem

If L_1 and L_2 are regular languages, then $L_1 \cdot L_2$ is regular.

Proof:

- Let B_1 and B_2 be NFAs such that $L(B_1) = L_1$ and $L(B_2) = L_2$.
- Construct an NFA B by adding ϵ-transitions from the final states of B_1 to the start state of B_2. Let the start state of B be the start state of B_1; and let the final states of B be the final states of B_2.
- Any word in $L_1 \cdot L_2$ can be written as wv with $w \in L_1$ and $v \in L_2$. w has an accepting run in B_1 and v has an accepting run in B_2, so wv has an accepting run in B.
- Conversely, any word w with an accepting run in B can be broken up into an accepting run in B_1 followed by an accepting run in B_2. Thus w can be broken up into two words $w = xy$ where $x \in L_1$ and $y \in L_2$.
Kleene star

Recall for a language \(X \):
\[X^* = \{ w : w \text{ can be made up from 0 or more words in } X \} \]

Theorem

If \(L \) is regular languages, then \(L^* \) is regular.

Proof:

- Let \(B \) be an NFA such that \(L(B) = L \).
- Construct an NFA \(B' \) by:
 - creating a new start state which is accepting;
 - adding an \(\epsilon \)-transition from the new start state to the start state of \(B \);
 - adding \(\epsilon \)-transitions from the final states of \(B \) to the new start state.
- Similar arguments as before show that \(L(B') = L(B)^* \).
Kleene star

Recall for a language X:

$$X^* = \{ w : w \text{ can be made up from 0 or more words in } X \}$$

Theorem

If L is regular languages, then L^ is regular.*

Proof:

- Let B be an NFA such that $L(B) = L$
- Construct an NFA B' by:
 - creating a new start state which is accepting;
 - adding an ϵ-transition from the new start state to the start state of B;
 - adding ϵ-transitions from the final states of B to the new start state.
- Similar arguments as before show that $L(B') = L(B)^*$
Kleene star

Recall for a language X:

\[X^* = \{ w : w \text{ can be made up from 0 or more words in } X \} \]

Theorem

If L is regular languages, then L^* is regular.

Proof:

- Let B be an NFA such that $L(B) = L$
- Construct an NFA B' by:
 - creating a new start state which is accepting;
 - adding an ε-transition from the new start state to the start state of B
 - adding ε-transitions from the final states of B to the new start state.

 Similar arguments as before show that $L(B') = L(B)^*$
Kleene star

Recall for a language X:

$X^* = \{ w : w \text{ can be made up from 0 or more words in } X \}$

Theorem

If L is regular languages, then L^ is regular.*

Proof:

- Let B be an NFA such that $L(B) = L$
- Construct an NFA B' by:
 - creating a new start state which is accepting;
 - adding an ϵ-transition from the new start state to the start state of B
 - adding ϵ-transitions from the final states of B to the new start state.

- Similar arguments as before show that $L(B') = L(B)^*$
Regular operations

Concatenation, union, and Kleene star are collectively known as the regular operations.

Recall:
The definition of a program in \mathcal{L}^+:

$$P ::= (x := e) \mid \varnothing \mid P_1; P_2 \mid P_1 + P_2 \mid P_1^*$$
Regular operations

Concatenation, union, and Kleene star are collectively known as the regular operations.

Recall:
The definition of a program in L^+:

$$P ::= (x := e) \mid \varnothing \mid P_1; P_2 \mid P_1 + P_2 \mid P_1^*$$
Summary

- Recap
- Deterministic Finite Automata
- Non-deterministic Finite Automata
- Regular languages
- Regular expressions
- Mealy machines
Regular expressions

Given a finite set Σ, a regular expression over Σ (RE) is defined recursively as follows:

- \emptyset is a regular expression
- ϵ is a regular expression
- a is a regular expression for all $a \in \Sigma$
- If E_1 and E_2 are regular expressions, then E_1E_2 is a regular expression
- If E_1 and E_2 are regular expressions, then $E_1 + E_2$ is a regular expression
- If E is a regular expression, then E^* is a regular expression

We use parentheses to disambiguate REs, though $*$ binds tighter than concatenation, which binds tighter than $+$.
Examples

Example

The following are regular expressions over $\Sigma = \{0, 1\}$:

- \emptyset
- $101 + 010$
- $(\epsilon + 10)^*01$