COMP2111 Week 7
 Term 1, 2019
 Finite automata

Summary

- Recap
- Deterministic Finite Automata
- Non-deterministic Finite Automata
- Regular languages
- Regular expressions
- Mealy machines

Summary

- Recap
- Deterministic Finite Automata
- Non-deterministic Finite Automata
- Regular languages
- Regular expressions
- Mealy machines

Transition systems

A transition system (or state machine) is a pair (S, \rightarrow) where S is a set and $\rightarrow \subseteq S \times S$ is a binary relation.

NB

S is not necessarily finite.
Transition systems may have:

- Λ-labelled transitions: $\rightarrow \subseteq S \times \Lambda \times S$
- A start/initial state $s_{0} \in S$
- A set of final states $F \subseteq S$ (where runs terminate)

If \rightarrow is a function (from $S \times \Lambda$ to S) then the transition system is deterministic. In general a transition system is non-deterministic.

Abstraction

Transition systems model computational processes abstractly.
We are not concerned with:

- the internal structure of states; or
- the nature of the transition relation (i.e. why two states are related)

Reachability and Runs

A state s^{\prime} is reachable from a state s if $\left(s, s^{\prime}\right) \in \rightarrow^{*}$ (the transitive closure of \rightarrow).

A run from a state s is a sequence s_{1}, s_{2}, \ldots such that $s_{1}=s$ and $s_{i} \rightarrow s_{i+1}$ for all i.

NB

In a non-deterministic transition system there may be many (including none) runs from a state. In an unlabelled deterministic transition system there is exactly one run from every state.

Acceptors and Transducers

An acceptor is a transition system with:

- (input-)labelled transitions
- a start/initial state
- a set of final states

A transducer is a transition system with:

- (input \& output-)labelled transitions
- a start/initial state

NB

Acceptors accept/reject sequences of inputs. Transducers map sequences of inputs to sequences of outputs.

Summary

- Recap
- Deterministic Finite Automata
- Non-deterministic Finite Automata
- Regular languages
- Regular expressions
- Mealy machines

Deterministic Finite Automata

A deterministic finite automaton (DFA) is a deterministic, finite state acceptor.

DFAs represent "computation with finite memory"
DFAs form the backbone of most computational models

Deterministic Finite Automata

Formally, a deterministic finite automaton (DFA) is a tuple $\left(Q, \Sigma, \delta, q_{0}, F\right)$ where

- Q is a finite set of states
- Σ is the input alphabet
- $\delta: Q \times \Sigma \rightarrow Q$ is the transition function
- $q_{0} \in Q$ is the start state
- $F \subseteq Q$ is the set of final/accepting states

Deterministic Finite Automata

Formally, a deterministic finite automaton (DFA) is a tuple $\left(Q, \Sigma, \delta, q_{0}, F\right)$ where

- Q is a finite set of states: $Q=\left\{q_{0}, q_{1}, q_{2}\right\}$
- Σ is the input alphabet
- $\delta: Q \times \Sigma \rightarrow Q$ is the transition function
- $q_{0} \in Q$ is the start state
- $F \subseteq Q$ is the set of final/accepting states

Deterministic Finite Automata

Formally, a deterministic finite automaton (DFA) is a tuple $\left(Q, \Sigma, \delta, q_{0}, F\right)$ where

- Q is a finite set of states: $Q=\left\{q_{0}, q_{1}, q_{2}\right\}$
- Σ is the input alphabet: $\Sigma=\{0,1\}$
- $\delta: Q \times \Sigma \rightarrow Q$ is the transition function
- $q_{0} \in Q$ is the start state
- $F \subseteq Q$ is the set of final/accepting states

Deterministic Finite Automata

$$
\begin{aligned}
& \delta\left(q_{0}, 0\right)=q_{0} \\
& \delta\left(q_{0}, 1\right)=q_{1} \\
& \delta\left(q_{1}, 0\right)=q_{2} \\
& \delta\left(q_{1}, 1\right)=q_{1} \\
& \delta\left(q_{2}, 0\right)=q_{1} \\
& \delta\left(q_{2}, 1\right)=q_{1}
\end{aligned}
$$

Deterministic Finite Automata

δ	0	1
q_{0}	q_{0}	q_{1}
q_{1}	q_{2}	q_{1}
q_{2}	q_{1}	q_{1}

Deterministic Finite Automata

Formally, a deterministic finite automaton (DFA) is a tuple $\left(Q, \Sigma, \delta, q_{0}, F\right)$ where

- Q is a finite set of states: $Q=\left\{q_{0}, q_{1}, q_{2}\right\}$
- Σ is the input alphabet: $\Sigma=\{0,1\}$
- $\delta: Q \times \Sigma \rightarrow Q$ is the transition function
- $q_{0} \in Q$ is the start state
- $F \subseteq Q$ is the set of final/accepting states: $F=\left\{q_{1}\right\}$

Language of a DFA

A DFA accepts a sequence of symbols from Σ - i.e. elements of Σ^{*} Informally: A word defines a run in the DFA and the word is accepted if the run ends in a final state.

Language of a DFA

w: 1001

A DFA accepts a sequence of symbols from Σ - i.e. elements of Σ^{*}

Language of a DFA

w: 1001

A DFA accepts a sequence of symbols from Σ - i.e. elements of Σ^{*} - Start in state q_{0}

Language of a DFA

w: 1001

A DFA accepts a sequence of symbols from Σ - i.e. elements of Σ^{*}

- Start in state q_{0}
- Take the first symbol of w

Language of a DFA

w: 1001

A DFA accepts a sequence of symbols from Σ - i.e. elements of Σ^{*}

- Start in state q_{0}
- Take the first symbol of w
- Repeat the following until there are no symbols left:
- Based on the current state and current input symbol, transition to the appropriate state determined by δ

Language of a DFA

w: 1001

A DFA accepts a sequence of symbols from Σ - i.e. elements of Σ^{*}

- Start in state q_{0}
- Take the first symbol of w
- Repeat the following until there are no symbols left:
- Based on the current state and current input symbol, transition to the appropriate state determined by δ

Language of a DFA

w: 1001

A DFA accepts a sequence of symbols from Σ - i.e. elements of Σ^{*}

- Start in state q_{0}
- Take the first symbol of w
- Repeat the following until there are no symbols left:
- Based on the current state and current input symbol, transition to the appropriate state determined by δ
- Move to the next symbol in w

Language of a DFA

w: 1001

A DFA accepts a sequence of symbols from Σ - i.e. elements of Σ^{*}

- Start in state q_{0}
- Take the first symbol of w
- Repeat the following until there are no symbols left:
- Based on the current state and current input symbol, transition to the appropriate state determined by δ
- Move to the next symbol in w

Language of a DFA

w: 1001

A DFA accepts a sequence of symbols from Σ - i.e. elements of Σ^{*}

- Start in state q_{0}
- Take the first symbol of w
- Repeat the following until there are no symbols left:
- Based on the current state and current input symbol, transition to the appropriate state determined by δ
- Move to the next symbol in w

Language of a DFA

w: 1001

A DFA accepts a sequence of symbols from Σ - i.e. elements of Σ^{*}

- Start in state q_{0}
- Take the first symbol of w
- Repeat the following until there are no symbols left:
- Based on the current state and current input symbol, transition to the appropriate state determined by δ
- Move to the next symbol in w

Language of a DFA

w: 1001

A DFA accepts a sequence of symbols from Σ - i.e. elements of Σ^{*}

- Start in state q_{0}
- Take the first symbol of w
- Repeat the following until there are no symbols left:
- Based on the current state and current input symbol, transition to the appropriate state determined by δ
- Move to the next symbol in w

Language of a DFA

w: 1001

A DFA accepts a sequence of symbols from Σ - i.e. elements of Σ^{*}

- Start in state q_{0}
- Take the first symbol of w
- Repeat the following until there are no symbols left:
- Based on the current state and current input symbol, transition to the appropriate state determined by δ
- Move to the next symbol in w

Language of a DFA

w: 1001

A DFA accepts a sequence of symbols from Σ - i.e. elements of Σ^{*}

- Start in state q_{0}
- Take the first symbol of w
- Repeat the following until there are no symbols left:
- Based on the current state and current input symbol, transition to the appropriate state determined by δ
- Move to the next symbol in w

Language of a DFA

w: 1001

A DFA accepts a sequence of symbols from Σ - i.e. elements of Σ^{*}

- Start in state q_{0}
- Take the first symbol of w
- Repeat the following until there are no symbols left:
- Based on the current state and current input symbol, transition to the appropriate state determined by δ
- Move to the next symbol in w
- Accept if the process ends in a final state, otherwise reject.

Language of a DFA

$w: 1001$

A DFA accepts a sequence of symbols from Σ - i.e. elements of Σ^{*}

- Start in state q_{0}
- Take the first symbol of w
- Repeat the following until there are no symbols left:
- Based on the current state and current input symbol, transition to the appropriate state determined by δ
- Move to the next symbol in w
- Accept if the process ends in a final state, otherwise reject.

Language of a DFA

For a DFA $\mathcal{A}=\left(Q, \Sigma, \delta, q_{0}, F\right)$, the language of $\mathcal{A}, L(\mathcal{A})$, is the set of words from Σ^{*} which are accepted by \mathcal{A}

Language of a DFA

$$
L(\mathcal{A})=\{1,01,11,101, \ldots\}
$$

For a DFA $\mathcal{A}=\left(Q, \Sigma, \delta, q_{0}, F\right)$, the language of $\mathcal{A}, L(\mathcal{A})$, is the set of words from Σ^{*} which are accepted by \mathcal{A}

Language of a DFA

$$
L(\mathcal{A})=\{1,01,11,101, \ldots\}
$$

For a DFA $\mathcal{A}=\left(Q, \Sigma, \delta, q_{0}, F\right)$, the language of $\mathcal{A}, L(\mathcal{A})$, is the set of words from Σ^{*} which are accepted by \mathcal{A}

A language $L \subseteq \Sigma^{*}$ is regular if there is some DFA \mathcal{A} such that $L=L(\mathcal{A})$

Language of a DFA: formally

Given a DFA $\mathcal{A}=\left(Q, \Sigma, \delta, q_{0}, F\right)$ we define $L_{\mathcal{A}}: Q \rightarrow \Sigma^{*}$ inductively as follows:

- If $q \in F$ then $\lambda \in L_{\mathcal{A}}(q)$
- If $q \xrightarrow{a} q^{\prime}$ and $w \in L_{\mathcal{A}}\left(q^{\prime}\right)$ then $a w \in L_{\mathcal{A}}(q)$

Language of a DFA: formally

Given a DFA $\mathcal{A}=\left(Q, \Sigma, \delta, q_{0}, F\right)$ we define $L_{\mathcal{A}}: Q \rightarrow \Sigma^{*}$ inductively as follows:

- If $q \in F$ then $\lambda \in L_{\mathcal{A}}(q)$
- If $q \xrightarrow{a} q^{\prime}$ and $w \in L_{\mathcal{A}}\left(q^{\prime}\right)$ then $a w \in L_{\mathcal{A}}(q)$

We then define

$$
L(\mathcal{A})=L_{\mathcal{A}}\left(q_{0}\right)
$$

Examples

Example

$$
L\left(\mathcal{A}_{1}\right)=?
$$

Examples

Example

$$
L\left(\mathcal{A}_{1}\right)=\left\{w \in\{a, b\}^{*}: w \text { ends with } b\right\}
$$

Examples

Example

$$
L\left(\mathcal{A}_{2}\right)=?
$$

Examples

Example

$L\left(\mathcal{A}_{2}\right)=\left\{w \in\{a, b\}^{*}: w\right.$ ends with $\left.a\right\} \cup\{\lambda\}$

Examples

Example

Find \mathcal{A}_{3} such that $L\left(\mathcal{A}_{3}\right)=\emptyset$

Find \mathcal{A}_{4} such that $L\left(\mathcal{A}_{4}\right)=\{\lambda\}$

Examples

Example

Find \mathcal{A}_{3} such that $L\left(\mathcal{A}_{3}\right)=\emptyset$

Find \mathcal{A}_{4} such that $L\left(\mathcal{A}_{4}\right)=\{\lambda\}$

Examples

Example

Find \mathcal{A}_{3} such that $L\left(\mathcal{A}_{3}\right)=\emptyset$

Find \mathcal{A}_{4} such that $L\left(\mathcal{A}_{4}\right)=\{\lambda\}$

Examples

Example

Find \mathcal{A}_{5} such that $L\left(\mathcal{A}_{5}\right)=\left\{w \in\{a, b\}^{*}:\right.$ every odd symbol is $\left.b\right\}$

Examples

Example

Find \mathcal{A}_{5} such that $L\left(\mathcal{A}_{5}\right)=\left\{w \in\{a, b\}^{*}:\right.$ every odd symbol is $\left.b\right\}$

Examples

Example

Find \mathcal{A}_{6} such that
$L\left(\mathcal{A}_{6}\right)=\left\{w \in\{a, b\}^{*}:\right.$ second-last symbol is $\left.b\right\}$

Examples

Example

Find \mathcal{A}_{6} such that
$L\left(\mathcal{A}_{6}\right)=\left\{w \in\{a, b\}^{*}:\right.$ second-last symbol is $\left.b\right\}$

Examples

Example

Find \mathcal{A}_{6} such that
$L\left(\mathcal{A}_{6}\right)=\left\{w \in\{a, b\}^{*}\right.$: second-last symbol is $\left.b\right\}$

Summary

- Recap
- Deterministic Finite Automata
- Non-deterministic Finite Automata
- Regular languages
- Regular expressions
- Mealy machines

Non-deterministic Finite Automata

A non-deterministic finite automaton (NFA) is a nondeterministic, finite state acceptor.

More general than DFAs: A DFA is an NFA

Non-deterministic Finite Automata

Formally, a non-deterministic finite automaton (NFA) is a tuple $\left(Q, \Sigma, \delta, q_{0}, F\right)$ where

- Q is a finite set of states
- Σ is the input alphabet
- $\delta \subseteq Q \times(\Sigma \cup\{\epsilon\}) \times Q$ is the transition relation
- $q_{0} \in Q$ is the start state
- $F \subseteq Q$ is the set of final/accepting states

Non-deterministic Finite Automata

Formally, a non-deterministic finite automaton (NFA) is a tuple $\left(Q, \Sigma, \delta, q_{0}, F\right)$ where

- Q is a finite set of states: $Q=\left\{q_{0}, q_{1}, q_{2}\right\}$
- Σ is the input alphabet
- $\delta \subseteq Q \times(\Sigma \cup\{\epsilon\}) \times Q$ is the transition relation
- $q_{0} \in Q$ is the start state
- $F \subseteq Q$ is the set of final/accepting states

Non-deterministic Finite Automata

Formally, a non-deterministic finite automaton (NFA) is a tuple $\left(Q, \Sigma, \delta, q_{0}, F\right)$ where

- Q is a finite set of states: $Q=\left\{q_{0}, q_{1}, q_{2}\right\}$
- Σ is the input alphabet: $\Sigma=\{0,1\}$
- $\delta \subseteq Q \times(\Sigma \cup\{\epsilon\}) \times Q$ is the transition relation
- $q_{0} \in Q$ is the start state
- $F \subseteq Q$ is the set of final/accepting states

Non-deterministic Finite Automata

$$
\delta=\left\{\begin{array}{lll}
\left(q_{0}, 0, q_{0}\right), & \left(q_{0}, 1, q_{0}\right), & \left(q_{0}, 1, q_{1}\right), \\
\left(q_{1}, \epsilon, q_{2}\right), & \left(q_{1}, 0, q_{2}\right), & \left(q_{1}, 1, q_{1}\right),
\end{array}\right\}
$$

Non-deterministic Finite Automata

δ	ϵ	0	1
q_{0}	\emptyset	$\left\{q_{0}\right\}$	$\left\{q_{0}, q_{1}\right\}$
q_{1}	$\left\{q_{2}\right\}$	$\left\{q_{2}\right\}$	$\left\{q_{1}\right\}$
q_{2}	\emptyset	$\left\{q_{1}\right\}$	\emptyset

Non-deterministic Finite Automata

Formally, a non-deterministic finite automaton (NFA) is a tuple $\left(Q, \Sigma, \delta, q_{0}, F\right)$ where

- Q is a finite set of states: $Q=\left\{q_{0}, q_{1}, q_{2}\right\}$
- Σ is the input alphabet: $\Sigma=\{0,1\}$
- $\delta \subseteq Q \times(\Sigma \cup\{\epsilon\}) \times Q$ is the transition relation
- $q_{0} \in Q$ is the start state
- $F \subseteq Q$ is the set of final/accepting states: $F=\left\{q_{1}\right\}$

Language of an NFA

An NFA accepts a sequence of symbols from Σ - i.e. elements of Σ^{*}
Informally: A word defines several runs in the NFA and the word is accepted if at least one run ends in a final state.

Note 1: Runs can end prematurely (these don't count)
Note 2: An NFA will always "choose wisely"

Language of an NFA

w: 1000

Language of an NFA

w: 1000

- Start in state q_{0}

Language of an NFA

w: 1000

- Start in state q_{0}
- Take the first symbol of w

Language of an NFA

w: 1000

- Start in state q_{0}
- Take the first symbol of w
- Repeat until there are no symbols left or no transitions available:
- Based on the current state and current input symbol or ϵ, transition to any state determined by δ

Language of an NFA

$w: 1000$

- Start in state q_{0}
- Take the first symbol of w
- Repeat until there are no symbols left or no transitions available:
- Based on the current state and current input symbol or ϵ, transition to any state determined by δ

Language of an NFA

$w: 1000$

- Start in state q_{0}
- Take the first symbol of w
- Repeat until there are no symbols left or no transitions available:
- Based on the current state and current input symbol or ϵ, transition to any state determined by δ
- If not an ϵ-transition, move to the next symbol in w

Language of an NFA

$w: 1000$

- Start in state q_{0}
- Take the first symbol of w
- Repeat until there are no symbols left or no transitions available:
- Based on the current state and current input symbol or ϵ, transition to any state determined by δ
- If not an ϵ-transition, move to the next symbol in w

Language of an NFA

$w: 1000$

- Start in state q_{0}
- Take the first symbol of w
- Repeat until there are no symbols left or no transitions available:
- Based on the current state and current input symbol or ϵ, transition to any state determined by δ
- If not an ϵ-transition, move to the next symbol in w

Language of an NFA

$w: 1000$

- Start in state q_{0}
- Take the first symbol of w
- Repeat until there are no symbols left or no transitions available:
- Based on the current state and current input symbol or ϵ, transition to any state determined by δ
- If not an ϵ-transition, move to the next symbol in w

Language of an NFA

$w: 1000$

- Start in state q_{0}
- Take the first symbol of w
- Repeat until there are no symbols left or no transitions available:
- Based on the current state and current input symbol or ϵ, transition to any state determined by δ
- If not an ϵ-transition, move to the next symbol in w

Language of an NFA

$w: 1000$

- Start in state q_{0}
- Take the first symbol of w
- Repeat until there are no symbols left or no transitions available:
- Based on the current state and current input symbol or ϵ, transition to any state determined by δ
- If not an ϵ-transition, move to the next symbol in w

Language of an NFA

$w: 1000$

- Start in state q_{0}
- Take the first symbol of w
- Repeat until there are no symbols left or no transitions available:
- Based on the current state and current input symbol or ϵ, transition to any state determined by δ
- If not an ϵ-transition, move to the next symbol in w

Language of an NFA

w: 1000

- Start in state q_{0}
- Take the first symbol of w
- Repeat until there are no symbols left or no transitions available:
- Based on the current state and current input symbol or ϵ, transition to any state determined by δ
- If not an ϵ-transition, move to the next symbol in w

Language of an NFA

w: 1000

- Start in state q_{0}
- Take the first symbol of w
- Repeat until there are no symbols left or no transitions available:
- Based on the current state and current input symbol or ϵ, transition to any state determined by δ
- If not an ϵ-transition, move to the next symbol in w

Language of an NFA

$w: 1000$

- Start in state q_{0}
- Take the first symbol of w
- Repeat until there are no symbols left or no transitions available:
- Based on the current state and current input symbol or ϵ, transition to any state determined by δ
- If not an ϵ-transition, move to the next symbol in w
- Accept if there are no symbols left and the process ends in a final state, otherwise reject.

Language of an NFA

$w: 1000$

- Start in state q_{0}
- Take the first symbol of w
- Repeat until there are no symbols left or no transitions available:
- Based on the current state and current input symbol or ϵ, transition to any state determined by δ
- If not an ϵ-transition, move to the next symbol in w
- Accept if there are no symbols left and the process ends in a final state, otherwise reject.

Language of an NFA

For an NFA $\mathcal{A}=\left(Q, \Sigma, \delta, q_{0}, F\right)$, the language of $\mathcal{A}, L(\mathcal{A})$, is the set of words from Σ^{*} which are accepted by \mathcal{A}

Language of an NFA

$$
L(\mathcal{A})=\{1,01,11,10, \ldots\}
$$

For an NFA $\mathcal{A}=\left(Q, \Sigma, \delta, q_{0}, F\right)$, the language of $\mathcal{A}, L(\mathcal{A})$, is the set of words from Σ^{*} which are accepted by \mathcal{A}

Language of an NFA: formally

Given an NFA $\mathcal{A}=\left(Q, \Sigma, \delta, q_{0}, F\right)$ we define $L_{\mathcal{A}}: Q \rightarrow \Sigma^{*}$ inductively as follows:

- If $q \in F$ then $\lambda \in L_{\mathcal{A}}(q)$
- If $q \xrightarrow{a} q^{\prime}$ and $w \in L_{\mathcal{A}}\left(q^{\prime}\right)$ then $a w \in L_{\mathcal{A}}(q)$
- If $q \xrightarrow{\epsilon} q^{\prime}$ and $w \in L_{\mathcal{A}}\left(q^{\prime}\right)$ then $w \in L_{\mathcal{A}}(q)$

Language of an NFA: formally

Given an NFA $\mathcal{A}=\left(Q, \Sigma, \delta, q_{0}, F\right)$ we define $L_{\mathcal{A}}: Q \rightarrow \Sigma^{*}$ inductively as follows:

- If $q \in F$ then $\lambda \in L_{\mathcal{A}}(q)$
- If $q \xrightarrow{a} q^{\prime}$ and $w \in L_{\mathcal{A}}\left(q^{\prime}\right)$ then $a w \in L_{\mathcal{A}}(q)$
- If $q \xrightarrow{\epsilon} q^{\prime}$ and $w \in L_{\mathcal{A}}\left(q^{\prime}\right)$ then $w \in L_{\mathcal{A}}(q)$

We then define

$$
L(\mathcal{A})=L_{\mathcal{A}}\left(q_{0}\right)
$$

Examples

Example

$L\left(\mathcal{B}_{1}\right)=$?

Examples

Example

$$
L\left(\mathcal{B}_{1}\right)=\left\{w \in\{a, b\}^{*}: w \text { ends with } b\right\}
$$

Examples

Example

$L\left(\mathcal{B}_{2}\right)=$?

Examples

Example

$$
L\left(\mathcal{B}_{2}\right)=\{a, b\}^{*}
$$

Examples

Example

Find \mathcal{B}_{3} such that $L\left(\mathcal{B}_{3}\right)=\emptyset$

Find \mathcal{B}_{4} such that $L\left(\mathcal{B}_{4}\right)=\{\lambda\}$

Examples

Example

Find \mathcal{B}_{3} such that $L\left(\mathcal{B}_{3}\right)=\emptyset$

$$
\mathcal{B}_{3}
$$

Find \mathcal{B}_{4} such that $L\left(\mathcal{B}_{4}\right)=\{\lambda\}$

Examples

Example

Find \mathcal{B}_{3} such that $L\left(\mathcal{B}_{3}\right)=\emptyset$

$$
\mathcal{B}_{3}
$$

Find \mathcal{B}_{4} such that $L\left(\mathcal{B}_{4}\right)=\{\lambda\}$

$$
\mathcal{B}_{4}
$$

Examples

Example

Find \mathcal{B}_{5} such that $L\left(\mathcal{B}_{5}\right)=\left\{w \in\{a, b\}^{*}\right.$: second-last symbol is $\left.b\right\}$

Examples

Example

Find \mathcal{B}_{5} such that $L\left(\mathcal{B}_{5}\right)=\left\{w \in\{a, b\}^{*}\right.$: second-last symbol is $\left.b\right\}$

NFAs vs DFAs

Clearly for any DFA \mathcal{A} there is an NFA \mathcal{B} such that $L(\mathcal{A})=L(\mathcal{B})$.

NFAs vs DFAs

Clearly for any DFA \mathcal{A} there is an NFA \mathcal{B} such that $L(\mathcal{A})=L(\mathcal{B})$.

Theorem

For any NFA \mathcal{B} there is a DFA \mathcal{A} such that $L(\mathcal{A})=L(\mathcal{B})$.

NFAs vs DFAs

Clearly for any DFA \mathcal{A} there is an NFA \mathcal{B} such that $L(\mathcal{A})=L(\mathcal{B})$.

Theorem

For any NFA \mathcal{B} there is a DFA \mathcal{A} such that $L(\mathcal{A})=L(\mathcal{B})$.
Proof sketch: (Subset construction)
Given $\mathcal{B}=\left(Q, \Sigma, \delta, q_{0}, F\right)$, construct $\mathcal{A}=\left(Q^{\prime}, \Sigma, \delta^{\prime}, q_{0}^{\prime}, F^{\prime}\right)$ as follows:

- $Q^{\prime}=\operatorname{Pow}(Q)$
- $\delta^{\prime}(X, a)=\left\{q^{\prime} \in Q: \exists q \in X, q^{\prime \prime} \in Q \cdot q \xrightarrow{a} q^{\prime \prime} \xrightarrow{\epsilon} q^{\prime}\right\}$
- $q_{0}^{\prime}=\left\{q_{0}\right\}$
- $F^{\prime}=\left\{X \in Q^{\prime}: X \cap F \neq \emptyset\right\}$

Intuitively: \mathcal{A} keeps track of all the possible states \mathcal{B} could be in after seeing a given sequence of symbols.

NFA to DFA Example

Example

NFA to DFA Example

Example

NFA to DFA Example

Example

NFA to DFA Example

Example

NFA to DFA Example

Example

NFA to DFA Example

Example

NFA to DFA Example

Example

NFA to DFA Example

Example

NFA to DFA Example

Example

NFA to DFA Example

Example

NFA to DFA Example

Example

$$
\rightarrow \text { (q) }
$$

NFA to DFA Example

Example

$$
\rightarrow \text { (q) }
$$

NFA to DFA Example

Example

NFA to DFA Example

Example

NFAs vs DFAs

Theorem

- For any NFA with n states there exists a DFA with at most 2^{n} states that accepts the same language
- There exist NFAs with n states such that the smallest DFA that accepts the same language has at least 2^{n} states.

Summary

- Recap
- Deterministic Finite Automata
- Non-deterministic Finite Automata
- Regular languages
- Regular expressions
- Mealy machines

Regular languages

A language $L \subseteq \Sigma^{*}$ is regular if there is some DFA \mathcal{A} such that $L=L(\mathcal{A})$

Regular languages

A language $L \subseteq \Sigma^{*}$ is regular if there is some DFA \mathcal{A} such that $L=L(\mathcal{A})$

Equivalently, there is some NFA \mathcal{B} such that $L=L(\mathcal{B})$

Non-regular languages

Are there languages which are not regular?

Non-regular languages

Are there languages which are not regular? Yes
"Simple" counting argument: there are uncountably many languages, and only countably many DFAs

Non-regular languages

Are there languages which are not regular? Yes
"Simple" counting argument: there are uncountably many languages, and only countably many DFAs

An example of a non-regular language: $\left\{0^{n} 1^{n}: n \in \mathbb{N}\right\}$ Intuitively: need arbitrary large memory to "remember" the number of 0's

Complementation

Theorem
If L is a regular language then $L^{c}=\Sigma^{*} \backslash L$ is a regular language.
Proof:

Complementation

Theorem

If L is a regular language then $L^{c}=\Sigma^{*} \backslash L$ is a regular language.
Proof:

- Let $\mathcal{A}=\left(Q, \Sigma, \delta, q_{0}, F\right)$ be a DFA such that $L(\mathcal{A})=L$

Complementation

Theorem

If L is a regular language then $L^{c}=\Sigma^{*} \backslash L$ is a regular language.
Proof:

- Let $\mathcal{A}=\left(Q, \Sigma, \delta, q_{0}, F\right)$ be a DFA such that $L(\mathcal{A})=L$
- Consider $\mathcal{A}^{\prime}=\left(Q, \Sigma, \delta, q_{0}, Q \backslash F\right)$

Complementation
Theorem
If L is a regular language then $L^{c}=\Sigma^{*} \backslash L$ is a regular language.
Proof:

- Let $\mathcal{A}=\left(Q, \Sigma, \delta, q_{0}, F\right)$ be a DFA such that $L(\mathcal{A})=L$
- Consider $\mathcal{A}^{\prime}=\left(Q, \Sigma, \delta, q_{0}, Q \backslash F\right)$
- For any word $w \in \Sigma^{*}$, the corresponding run in \mathcal{A} is unique, so:
- If $w \in L(\mathcal{A})$ then $w \notin L\left(\mathcal{A}^{\prime}\right)$, and
- If $w \notin L(\mathcal{A})$ then $w \in L\left(\mathcal{A}^{\prime}\right)$,

Complementation
Theorem
If L is a regular language then $L^{c}=\Sigma^{*} \backslash L$ is a regular language.
Proof:

- Let $\mathcal{A}=\left(Q, \Sigma, \delta, q_{0}, F\right)$ be a DFA such that $L(\mathcal{A})=L$
- Consider $\mathcal{A}^{\prime}=\left(Q, \Sigma, \delta, q_{0}, Q \backslash F\right)$
- For any word $w \in \Sigma^{*}$, the corresponding run in \mathcal{A} is unique, so:
- If $w \in L(\mathcal{A})$ then $w \notin L\left(\mathcal{A}^{\prime}\right)$, and
- If $w \notin L(\mathcal{A})$ then $w \in L\left(\mathcal{\mathcal { A } ^ { \prime }}\right)$,
- Therefore $L\left(\mathcal{A}^{\prime}\right)=\Sigma^{*} \backslash L(\mathcal{A})=L^{c}$

Complementation

Theorem

If L is a regular language then $L^{c}=\Sigma^{*} \backslash L$ is a regular language.
Proof:

- Let $\mathcal{A}=\left(Q, \Sigma, \delta, q_{0}, F\right)$ be a DFA such that $L(\mathcal{A})=L$
- Consider $\mathcal{A}^{\prime}=\left(Q, \Sigma, \delta, q_{0}, Q \backslash F\right)$
- For any word $w \in \Sigma^{*}$, the corresponding run in \mathcal{A} is unique, so:
- If $w \in L(\mathcal{A})$ then $w \notin L\left(\mathcal{A}^{\prime}\right)$, and
- If $w \notin L(\mathcal{A})$ then $w \in L\left(\mathcal{A}^{\prime}\right)$,
- Therefore $L\left(\mathcal{A}^{\prime}\right)=\Sigma^{*} \backslash L(\mathcal{A})=L^{c}$

NB

This argument does not apply for NFAs (see \mathcal{B}_{1} and \mathcal{B}_{2})

Union

Theorem
If L_{1} and L_{2} are regular languages, then $L_{1} \cup L_{2}$ is regular.
Proof:

Union

Theorem

If L_{1} and L_{2} are regular languages, then $L_{1} \cup L_{2}$ is regular.
Proof:

- Let \mathcal{B}_{1} and \mathcal{B}_{2} be NFAs such that $L\left(\mathcal{B}_{1}\right)=L_{1}$ and $L\left(\mathcal{B}_{2}\right)=L_{2}$

Union

Theorem

If L_{1} and L_{2} are regular languages, then $L_{1} \cup L_{2}$ is regular.
Proof:

- Let \mathcal{B}_{1} and \mathcal{B}_{2} be NFAs such that $L\left(\mathcal{B}_{1}\right)=L_{1}$ and $L\left(\mathcal{B}_{2}\right)=L_{2}$
- Construct an NFA \mathcal{B} by having a new start state with ϵ-transitions to the start states of \mathcal{B}_{1} and \mathcal{B}_{2}

Union

Theorem

If L_{1} and L_{2} are regular languages, then $L_{1} \cup L_{2}$ is regular.
Proof:

- Let \mathcal{B}_{1} and \mathcal{B}_{2} be NFAs such that $L\left(\mathcal{B}_{1}\right)=L_{1}$ and $L\left(\mathcal{B}_{2}\right)=L_{2}$
- Construct an NFA \mathcal{B} by having a new start state with ϵ-transitions to the start states of \mathcal{B}_{1} and \mathcal{B}_{2}
- Consider $w \in L_{1} \cup L_{2}$:
- If $w \in L_{1}$ then there is a run in \mathcal{B}_{1}, and hence in \mathcal{B}, which ends in a final state
- If $w \in L_{2}$ then there is a run in \mathcal{B}_{2}, and hence in \mathcal{B}, which ends in a final state
- In either case $w \in L(\mathcal{B})$

Union

Theorem

If L_{1} and L_{2} are regular languages, then $L_{1} \cup L_{2}$ is regular.
Proof:

- Let \mathcal{B}_{1} and \mathcal{B}_{2} be NFAs such that $L\left(\mathcal{B}_{1}\right)=L_{1}$ and $L\left(\mathcal{B}_{2}\right)=L_{2}$
- Construct an NFA \mathcal{B} by having a new start state with ϵ-transitions to the start states of \mathcal{B}_{1} and \mathcal{B}_{2}
- Consider $w \in L_{1} \cup L_{2}$:
- If $w \in L_{1}$ then there is a run in \mathcal{B}_{1}, and hence in \mathcal{B}, which ends in a final state
- If $w \in L_{2}$ then there is a run in \mathcal{B}_{2}, and hence in \mathcal{B}, which ends in a final state
- In either case $w \in L(\mathcal{B})$
- Conversely, any accepting run in \mathcal{B} will be either an accepting run in \mathcal{B}_{1} or in \mathcal{B}_{2}; so if $w \in L(\mathcal{B})$ then $w \in L_{1} \cup L_{2}$

Intersection

Theorem
If L_{1} and L_{2} are regular languages, then $L_{1} \cap L_{2}$ is regular.
Proof:

Intersection

Theorem
If L_{1} and L_{2} are regular languages, then $L_{1} \cap L_{2}$ is regular.
Proof:

$$
L_{1} \cap L_{2}=\left(L_{1}^{c} \cup L_{2}^{c}\right)^{c}
$$

Concatenation

Recall for languages X and $Y: X \cdot Y=\{x y: x \in X, y \in Y\}$
Theorem
If L_{1} and L_{2} are regular languages, then $L_{1} \cdot L_{2}$ is regular.
Proof:

Concatenation

Recall for languages X and $Y: X \cdot Y=\{x y: x \in X, y \in Y\}$

Theorem

If L_{1} and L_{2} are regular languages, then $L_{1} \cdot L_{2}$ is regular.
Proof:

- Let \mathcal{B}_{1} and \mathcal{B}_{2} be NFAs such that $L\left(\mathcal{B}_{1}\right)=L_{1}$ and $L\left(\mathcal{B}_{2}\right)=L_{2}$

Concatenation

Recall for languages X and $Y: X \cdot Y=\{x y: x \in X, y \in Y\}$

Theorem

If L_{1} and L_{2} are regular languages, then $L_{1} \cdot L_{2}$ is regular.
Proof:

- Let \mathcal{B}_{1} and \mathcal{B}_{2} be NFAs such that $L\left(\mathcal{B}_{1}\right)=L_{1}$ and $L\left(\mathcal{B}_{2}\right)=L_{2}$
- Construct an NFA \mathcal{B} by adding ϵ-transitions from the final states of \mathcal{B}_{1} to the start state of \mathcal{B}_{2}. Let the start state of \mathcal{B} be the start state of \mathcal{B}_{1}; and let the final states of \mathcal{B} be the final states of \mathcal{B}_{2}.

Concatenation

Recall for languages X and $Y: X \cdot Y=\{x y: x \in X, y \in Y\}$

Theorem

If L_{1} and L_{2} are regular languages, then $L_{1} \cdot L_{2}$ is regular.
Proof:

- Let \mathcal{B}_{1} and \mathcal{B}_{2} be NFAs such that $L\left(\mathcal{B}_{1}\right)=L_{1}$ and $L\left(\mathcal{B}_{2}\right)=L_{2}$
- Construct an NFA \mathcal{B} by adding ϵ-transitions from the final states of \mathcal{B}_{1} to the start state of \mathcal{B}_{2}. Let the start state of \mathcal{B} be the start state of \mathcal{B}_{1}; and let the final states of \mathcal{B} be the final states of \mathcal{B}_{2}.
- Any word in $L_{1} \cdot L_{2}$ can be written as $w v$ with $w \in L_{1}$ and $v \in L_{2}$. w has an accepting run in \mathcal{B}_{1} and v has an accepting run in \mathcal{B}_{2}, so wv has an accepting run in \mathcal{B}.

Concatenation

Recall for languages X and $Y: X \cdot Y=\{x y: x \in X, y \in Y\}$

Theorem

If L_{1} and L_{2} are regular languages, then $L_{1} \cdot L_{2}$ is regular.
Proof:

- Let \mathcal{B}_{1} and \mathcal{B}_{2} be NFAs such that $L\left(\mathcal{B}_{1}\right)=L_{1}$ and $L\left(\mathcal{B}_{2}\right)=L_{2}$
- Construct an NFA \mathcal{B} by adding ϵ-transitions from the final states of \mathcal{B}_{1} to the start state of \mathcal{B}_{2}. Let the start state of \mathcal{B} be the start state of \mathcal{B}_{1}; and let the final states of \mathcal{B} be the final states of \mathcal{B}_{2}.
- Any word in $L_{1} \cdot L_{2}$ can be written as $w v$ with $w \in L_{1}$ and $v \in L_{2} . w$ has an accepting run in \mathcal{B}_{1} and v has an accepting run in \mathcal{B}_{2}, so $w v$ has an accepting run in \mathcal{B}.
- Conversely, any word w with an accepting run in \mathcal{B} can be broken up into an accepting run in \mathcal{B}_{1} followed by an accepting run in \mathcal{B}_{2}. Thus w can be broken up into two words $w=x y$ where $x \in L_{1}$ and $y \in L_{2}$.

Kleene star

Recall for a language X :
$X^{*}=\{w: w$ can be made up from 0 or more words in $X\}$

Theorem

If L is regular languages, then L^{*} is regular.
Proof:

Kleene star

Recall for a language X :
$X^{*}=\{w: w$ can be made up from 0 or more words in $X\}$

Theorem

If L is regular languages, then L^{*} is regular.
Proof:

- Let \mathcal{B} be an NFA such that $L(\mathcal{B})=L$

Kleene star

Recall for a language X :
$X^{*}=\{w: w$ can be made up from 0 or more words in $X\}$

Theorem

If L is regular languages, then L^{*} is regular.
Proof:

- Let \mathcal{B} be an NFA such that $L(\mathcal{B})=L$
- Construct an NFA \mathcal{B}^{\prime} by:
- creating a new start state which is accepting;
- adding an ϵ-transition from the new start state to the start state of \mathcal{B}
- adding ϵ-transitions from the final states of \mathcal{B} to the new start state.

Kleene star

Recall for a language X :
$X^{*}=\{w: w$ can be made up from 0 or more words in $X\}$

Theorem

If L is regular languages, then L^{*} is regular.
Proof:

- Let \mathcal{B} be an NFA such that $L(\mathcal{B})=L$
- Construct an NFA \mathcal{B}^{\prime} by:
- creating a new start state which is accepting;
- adding an ϵ-transition from the new start state to the start state of \mathcal{B}
- adding ϵ-transitions from the final states of \mathcal{B} to the new start state.
- Similar arguments as before show that $L\left(\mathcal{B}^{\prime}\right)=L(\mathcal{B})^{*}$

Regular operations

Concatenation, union, and Kleene star are collectively known as the regular operations.

Regular operations

Concatenation, union, and Kleene star are collectively known as the regular operations.

Recall:

The definition of a program in \mathcal{L}^{+}:

$$
P \quad::=(x:=e)|\varphi| P_{1} ; P_{2}\left|P_{1}+P_{2}\right| P_{1}^{*}
$$

Summary

- Recap
- Deterministic Finite Automata
- Non-deterministic Finite Automata
- Regular languages
- Regular expressions
- Mealy machines

Regular expressions

Given a finite set Σ, a regular expression over $\Sigma($ RE $)$ is defined recursively as follows:

- \emptyset is a regular expression
- ϵ is a regular expression
- a is a regular expression for all $a \in \Sigma$
- If E_{1} and E_{2} are regular expressions, then $E_{1} E_{2}$ is a regular expression
- If E_{1} and E_{2} are regular expressions, then $E_{1}+E_{2}$ is a regular expression
- If E is a regular expression, then E^{*} is a regular expression We use parentheses to disambiguate REs, though * binds tighter than concatenation, which binds tighter than + .

Examples

Example

The following are regular expressions over $\Sigma=\{0,1\}$:

- \emptyset
- $101+010$
- $(\epsilon+10)^{*} 01$

