COMP2111 Week 7
Term 1, 2019
Finite automata

Summary

- Recap
- Deterministic Finite Automata
- Non-deterministic Finite Automata
- Regular languages
- Regular expressions
- Mealy machines

Summary

- Recap
- Deterministic Finite Automata
- Non-deterministic Finite Automata
- Regular languages
- Regular expressions
- Mealy machines

Transition systems

A transition system (or state machine) is a pair (S, \rightarrow) where S is a set and $\rightarrow \subseteq S \times S$ is a binary relation.

NB

S is not necessarily finite.

Transition systems may have:

- Λ -labelled transitions: $\rightarrow \subseteq S \times \Lambda \times S$
- A start/initial state $s_0 \in S$
- A set of final states $F \subseteq S$ (where runs terminate)

If \to is a function (from $S \times \Lambda$ to S) then the transition system is **deterministic**. In general a transition system is **non-deterministic**.

Abstraction

Transition systems model computational processes *abstractly*.

We are not concerned with:

- the internal structure of states; or
- the nature of the transition relation (i.e. *why* two states are related)

Reachability and Runs

A state s' is **reachable** from a state s if $(s, s') \in \to^*$ (the transitive closure of \to).

A **run** from a state s is a sequence s_1, s_2, \ldots such that $s_1 = s$ and $s_i \to s_{i+1}$ for all i.

NB

In a non-deterministic transition system there may be many (including none) runs from a state. In an unlabelled deterministic transition system there is exactly one run from every state.

Acceptors and Transducers

An **acceptor** is a transition system with:

- (input-)labelled transitions
- a start/initial state
- a set of final states

A transducer is a transition system with:

- (input & output-)labelled transitions
- a start/initial state

NB

Acceptors accept/reject sequences of inputs. Transducers map sequences of inputs to sequences of outputs.

Summary

- Recap
- Deterministic Finite Automata
- Non-deterministic Finite Automata
- Regular languages
- Regular expressions
- Mealy machines

A deterministic finite automaton (DFA) is a deterministic, finite state acceptor.

DFAs represent "computation with finite memory"

DFAs form the backbone of most computational models

- Q is a finite set of states: $Q = \{q_0, q_1, q_2\}$
- Σ is the input alphabet: $\Sigma = \{0,1\}$
- $\delta: Q \times \Sigma \to Q$ is the transition function
- $q_0 \in Q$ is the start state
- $F \subseteq Q$ is the set of final/accepting states: $F = \{q_1\}$

- Q is a finite set of states: $Q = \{q_0, q_1, q_2\}$
- Σ is the input alphabet: $\Sigma = \{0,1\}$
- $\delta: Q \times \Sigma \to Q$ is the transition function
- $q_0 \in Q$ is the start state
- $F \subseteq Q$ is the set of final/accepting states: $F = \{q_1\}$

- Q is a finite set of states: $Q = \{q_0, q_1, q_2\}$
- Σ is the input alphabet: $\Sigma = \{0,1\}$
- $\delta: Q \times \Sigma \to Q$ is the transition function
- $q_0 \in Q$ is the start state
- $F \subseteq Q$ is the set of final/accepting states: $F = \{q_1\}$

$$\delta(q_0, 0) = q_0$$

 $\delta(q_0, 1) = q_1$
 $\delta(q_1, 0) = q_2$
 $\delta(q_1, 1) = q_1$
 $\delta(q_2, 0) = q_1$
 $\delta(q_2, 1) = q_1$

δ	0	1
q 0	q 0	q_1
q_1	q 2	q_1
q_2	q_1	q_1

- Q is a finite set of states: $Q = \{q_0, q_1, q_2\}$
- Σ is the input alphabet: $\Sigma = \{0,1\}$
- $\delta: Q \times \Sigma \to Q$ is the transition function
- $q_0 \in Q$ is the start state
- $F \subseteq Q$ is the set of final/accepting states: $F = \{q_1\}$

A DFA accepts a sequence of symbols from Σ – i.e. elements of Σ^*

Informally: A word defines a run in the DFA and the word is accepted if the run ends in a final state.

w: 1001

- Start in state q_0
- Take the first symbol of w
- Repeat the following until there are no symbols left
 - \bullet Based on the current state and current input symbol, transition to the appropriate state determined by δ
- Accept if the process ends in a final statep otherwise reject.

w: 1001

- Start in state q_0
- Take the first symbol of w
- Repeat the following until there are no symbols left:
 - \bullet Based on the current state and current input symbol, transition to the appropriate state determined by δ
- Accept if the process ends in a final state poth@nwise reject. つへ

w: 1001

- Start in state q₀
- Take the first symbol of w
- Repeat the following until there are no symbols left:
 - \bullet Based on the current state and current input symbol, transition to the appropriate state determined by δ
- Accept if the process ends in a final state poth@rwise reject. ≥ ೨९०

w: 1001

- Start in state q₀
- Take the first symbol of w
- Repeat the following until there are no symbols left:
 - \bullet Based on the current state and current input symbol, transition to the appropriate state determined by δ
 - Move to the next symbol in w
- Accept if the process ends in a final statepoth@rwise reject. ๑००

w: 1001

- Start in state q₀
- Take the first symbol of w
- Repeat the following until there are no symbols left:
 - \bullet Based on the current state and current input symbol, transition to the appropriate state determined by δ
 - Move to the next symbol in w
- Accept if the process ends in a final statep otherwise reject. 🛢 🔊 🔍

w: 1001

- Start in state q₀
- Take the first symbol of w
- Repeat the following until there are no symbols left:
 - \bullet Based on the current state and current input symbol, transition to the appropriate state determined by δ
 - Move to the next symbol in w

w: 1001

- Start in state q₀
- Take the first symbol of w
- Repeat the following until there are no symbols left:
 - \bullet Based on the current state and current input symbol, transition to the appropriate state determined by δ
 - Move to the next symbol in w

w: 1001

- Start in state q₀
- Take the first symbol of w
- Repeat the following until there are no symbols left:
 - \bullet Based on the current state and current input symbol, transition to the appropriate state determined by δ
 - Move to the next symbol in w

w: 1001

- Start in state q₀
- Take the first symbol of w
- Repeat the following until there are no symbols left:
 - \bullet Based on the current state and current input symbol, transition to the appropriate state determined by δ
 - Move to the next symbol in w

w: 1001

- Start in state q₀
- Take the first symbol of w
- Repeat the following until there are no symbols left:
 - \bullet Based on the current state and current input symbol, transition to the appropriate state determined by δ
 - Move to the next symbol in w

w: 1001

- Start in state q₀
- Take the first symbol of w
- Repeat the following until there are no symbols left:
 - \bullet Based on the current state and current input symbol, transition to the appropriate state determined by δ
 - Move to the next symbol in w

w: 1001

- Start in state q₀
- Take the first symbol of w
- Repeat the following until there are no symbols left:
 - \bullet Based on the current state and current input symbol, transition to the appropriate state determined by δ
 - Move to the next symbol in w

w: 1001

- Start in state q₀
- Take the first symbol of w
- Repeat the following until there are no symbols left:
 - \bullet Based on the current state and current input symbol, transition to the appropriate state determined by δ
 - Move to the next symbol in w
- Accept if the process ends in a final state, otherwise reject.

w: 1001 ✓

- Start in state q₀
- Take the first symbol of w
- Repeat the following until there are no symbols left:
 - \bullet Based on the current state and current input symbol, transition to the appropriate state determined by δ
 - Move to the next symbol in w
- Accept if the process ends in a final state, otherwise reject.

For a DFA $\mathcal{A}=(Q,\Sigma,\delta,q_0,F)$, the **language of** \mathcal{A} , $\mathcal{L}(\mathcal{A})$, is the set of words from Σ^* which are accepted by \mathcal{A}

A language $L\subseteq \Sigma^*$ is **regular** if there is some DFA $\mathcal A$ such that $L=L(\mathcal A)$

For a DFA $\mathcal{A}=(Q,\Sigma,\delta,q_0,F)$, the **language of** \mathcal{A} , $\mathcal{L}(\mathcal{A})$, is the set of words from Σ^* which are accepted by \mathcal{A}

A language $L\subseteq \Sigma^*$ is **regular** if there is some DFA $\mathcal A$ such that $L=L(\mathcal A)$

$$L(A) = \{1, 01, 11, 101, \ldots\}$$

For a DFA $\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$, the **language of** \mathcal{A} , $\mathcal{L}(\mathcal{A})$, is the set of words from Σ^* which are accepted by \mathcal{A}

A language $L \subseteq \Sigma^*$ is **regular** if there is some DFA \mathcal{A} such that L = L(A)

Language of a DFA: formally

Given a DFA $\mathcal{A}=(Q,\Sigma,\delta,q_0,F)$ we define $L_{\mathcal{A}}:Q\to\Sigma^*$ inductively as follows:

- If $q \in F$ then $\lambda \in L_{\mathcal{A}}(q)$
- ullet If $q\stackrel{a}{
 ightarrow} q'$ and $w\in L_{\mathcal{A}}(q')$ then $aw\in L_{\mathcal{A}}(q)$

We then define

$$L(\mathcal{A}) = L_{\mathcal{A}}(q_0)$$

Language of a DFA: formally

Given a DFA $\mathcal{A}=(Q,\Sigma,\delta,q_0,F)$ we define $L_{\mathcal{A}}:Q\to\Sigma^*$ inductively as follows:

- If $q \in F$ then $\lambda \in L_{\mathcal{A}}(q)$
- ullet If $q\stackrel{a}{
 ightarrow} q'$ and $w\in L_{\mathcal{A}}(q')$ then $aw\in L_{\mathcal{A}}(q)$

We then define

$$L(A) = L_A(q_0)$$

Examples

Example

$$L(A_1) = ?$$

Example

$$L(A_1) = \{w \in \{a, b\}^* : w \text{ ends with } b\}$$

Example

$$L(A_2) = ?$$

Example

$$L(\mathcal{A}_2) = \{ w \in \{a, b\}^* : w \text{ ends with } a \} \cup \{\lambda\}$$

Example

Find A_3 such that $L(A_3) = \emptyset$

 \rightarrow q_0

Find A_4 such that $L(A_4) = \{\lambda\}$

Example

Find A_3 such that $L(A_3) = \emptyset$

Find A_4 such that $L(A_4) = \{\lambda\}$

Example

Find A_3 such that $L(A_3) = \emptyset$

Find A_4 such that $L(A_4) = \{\lambda\}$

Example

Find A_5 such that $L(A_5) = \{w \in \{a, b\}^* : \text{ every odd symbol is } b\}$

Example

Find A_5 such that $L(A_5) = \{w \in \{a, b\}^* : \text{ every odd symbol is } b\}$

Example

Find A_6 such that

$$L(A_6) = \{w \in \{a, b\}^* : \text{second-last symbol is } b\}$$

Example

Find A_6 such that

$$L(A_6) = \{w \in \{a, b\}^* : \text{second-last symbol is } b\}$$

Example

Find A_6 such that

 $L(A_6) = \{w \in \{a, b\}^* : \text{second-last symbol is } b\}$

Summary

- Recap
- Deterministic Finite Automata
- Non-deterministic Finite Automata
- Regular languages
- Regular expressions
- Mealy machines

A non-deterministic finite automaton (NFA) is a non-deterministic, finite state acceptor.

More general than DFAs: A DFA is an NFA

- Q is a finite set of states: $Q = \{q_0, q_1, q_2\}$
- Σ is the input alphabet: $\Sigma = \{0,1\}$
- $\delta \subseteq Q \times (\Sigma \cup {\epsilon}) \times Q$ is the transition relation
- $q_0 \in Q$ is the start state
- $F \subseteq Q$ is the set of final/accepting states: $F = \{q_1\}$

- Q is a finite set of states: $Q = \{q_0, q_1, q_2\}$
- Σ is the input alphabet: $\Sigma = \{0, 1\}$
- $\delta \subseteq Q \times (\Sigma \cup {\epsilon}) \times Q$ is the transition relation
- $q_0 \in Q$ is the start state
- $F \subseteq Q$ is the set of final/accepting states: $F = \{q_1\}$

- Q is a finite set of states: $Q = \{q_0, q_1, q_2\}$
- \bullet Σ is the input alphabet: $\Sigma = \{0,1\}$
- $\delta \subseteq Q \times (\Sigma \cup {\epsilon}) \times Q$ is the transition relation
- $ullet q_0 \in Q$ is the start state
- $F \subseteq Q$ is the set of final/accepting states: $F = \{q_1\}$

$$\delta = \left\{ egin{array}{ll} (q_0,0,q_0), & (q_0,1,q_0), & (q_0,1,q_1), \ (q_1,\epsilon,q_2), & (q_1,0,q_2), & (q_1,1,q_1), \ (q_2,0,q_1) & \end{array}
ight.$$

δ	ϵ	0	1
q 0	Ø	$\{q_0\}$	$\{q_0,q_1\}$
q_1	$\{q_2\}$	$\{q_2\}$	$\{q_1\}$
q_2	Ø	$\{q_1\}$	Ø

- Q is a finite set of states: $Q = \{q_0, q_1, q_2\}$
- \bullet Σ is the input alphabet: $\Sigma = \{0,1\}$
- $\delta \subseteq Q \times (\Sigma \cup {\epsilon}) \times Q$ is the transition relation
- $q_0 \in Q$ is the start state
- $F \subseteq Q$ is the set of final/accepting states: $F = \{q_1\}$

An NFA accepts a sequence of symbols from Σ – i.e. elements of Σ^*

Informally: A word defines several runs in the NFA and the word is accepted if **at least one run** ends in a final state.

Note 1: Runs can end prematurely (these don't count)

Note 2: An NFA will always "choose wisely"

- Start in state q_0
- Take the first symbol of w
- Repeat until there are no symbols left or no transitions available
 - Based on the current state and current input symbol or ϵ , transition to any state determined by δ
- Accept if there are no symbols left and the process ends in a final state, otherwise reject.

- Start in state q₀
- Take the first symbol of w
- Repeat until there are no symbols left or no transitions available
 - Based on the current state and current input symbol or ϵ , transition to any state determined by δ
- Accept if there are no symbols left and the process ends in a final state, otherwise reject.

- Start in state q₀
- Take the first symbol of w
- Repeat until there are no symbols left or no transitions available
 - Based on the current state and current input symbol or ϵ , transition to any state determined by δ
- Accept if there are no symbols left and the process ends in a final state, otherwise reject.

- Start in state q₀
- Take the first symbol of w
- Repeat until there are no symbols left or no transitions available:
 - Based on the current state and current input symbol or ϵ , transition to any state determined by δ
 - If not an ϵ -transition, move to the next symbol in w
- Accept if there are no symbols left and the process ends in a final state, otherwise reject.

- Start in state q₀
- Take the first symbol of w
- Repeat until there are no symbols left or no transitions available:
 - Based on the current state and current input symbol or ϵ , transition to any state determined by δ
 - If not an ϵ -transition, move to the next symbol in w
- Accept if there are no symbols left and the process ends in a final state, otherwise reject.

- Start in state q₀
- Take the first symbol of w
- Repeat until there are no symbols left or no transitions available:
 - Based on the current state and current input symbol or ϵ , transition to any state determined by δ
 - If not an ϵ -transition, move to the next symbol in w
- Accept if there are no symbols left and the process ends in a final state, otherwise reject.

- Start in state q₀
- Take the first symbol of w
- Repeat until there are no symbols left or no transitions available:
 - Based on the current state and current input symbol or ϵ , transition to any state determined by δ
 - If not an ϵ -transition, move to the next symbol in w
- Accept if there are no symbols left and the process ends in a final state, otherwise reject.

- Start in state q₀
- Take the first symbol of w
- Repeat until there are no symbols left or no transitions available:
 - Based on the current state and current input symbol or ϵ , transition to any state determined by δ
 - If not an ϵ -transition, move to the next symbol in w
- Accept if there are no symbols left and the process ends in a final state, otherwise reject.

- Start in state q₀
- Take the first symbol of w
- Repeat until there are no symbols left or no transitions available:
 - Based on the current state and current input symbol or ϵ , transition to any state determined by δ
 - If not an ϵ -transition, move to the next symbol in w
- Accept if there are no symbols left and the process ends in a final state, otherwise reject.

- Start in state q₀
- Take the first symbol of w
- Repeat until there are no symbols left or no transitions available:
 - Based on the current state and current input symbol or ϵ , transition to any state determined by δ
 - If not an ϵ -transition, move to the next symbol in w
- Accept if there are no symbols left and the process ends in a final state, otherwise reject.

- Start in state q₀
- Take the first symbol of w
- Repeat until there are no symbols left or no transitions available:
 - Based on the current state and current input symbol or ϵ , transition to any state determined by δ
 - If not an ϵ -transition, move to the next symbol in w
- Accept if there are no symbols left and the process ends in a final state, otherwise reject.

- Start in state q₀
- Take the first symbol of w
- Repeat until there are no symbols left or no transitions available:
 - Based on the current state and current input symbol or ϵ , transition to any state determined by δ
 - If not an ϵ -transition, move to the next symbol in w
- Accept if there are no symbols left and the process ends in a final state, otherwise reject.

- Start in state q₀
- Take the first symbol of w
- Repeat until there are no symbols left or no transitions available:
 - Based on the current state and current input symbol or ϵ , transition to any state determined by δ
 - If not an ϵ -transition, move to the next symbol in w
- Accept if there are no symbols left and the process ends in a final state, otherwise reject.

- Start in state q₀
- Take the first symbol of w
- Repeat until there are no symbols left or no transitions available:
 - Based on the current state and current input symbol or ϵ , transition to any state determined by δ
 - If not an ϵ -transition, move to the next symbol in w
- Accept if there are no symbols left and the process ends in a final state, otherwise reject.

- Start in state q₀
- Take the first symbol of w
- Repeat until there are no symbols left or no transitions available:
 - Based on the current state and current input symbol or ϵ , transition to any state determined by δ
 - If not an ϵ -transition, move to the next symbol in w
- Accept if there are no symbols left and the process ends in a final state, otherwise reject.

w: 1000 ✓

- Start in state q₀
- Take the first symbol of w
- Repeat until there are no symbols left or no transitions available:
 - Based on the current state and current input symbol or ϵ , transition to any state determined by δ
 - If not an ϵ -transition, move to the next symbol in w
- Accept if there are no symbols left and the process ends in a final state, otherwise reject.

Language of an NFA

For an NFA $\mathcal{A}=(Q,\Sigma,\delta,q_0,F)$, the **language of** \mathcal{A} , $\mathcal{L}(\mathcal{A})$, is the set of words from Σ^* which are accepted by \mathcal{A}

Language of an NFA

For an NFA $\mathcal{A}=(Q,\Sigma,\delta,q_0,F)$, the **language of** \mathcal{A} , $\mathcal{L}(\mathcal{A})$, is the set of words from Σ^* which are accepted by \mathcal{A}

Language of an NFA: formally

Given an NFA $\mathcal{A}=(Q,\Sigma,\delta,q_0,F)$ we define $L_{\mathcal{A}}:Q\to\Sigma^*$ inductively as follows:

- If $q \in F$ then $\lambda \in L_{\mathcal{A}}(q)$
- ullet If $q\stackrel{a}{
 ightarrow} q'$ and $w\in L_{\mathcal{A}}(q')$ then $aw\in L_{\mathcal{A}}(q)$
- ullet If $q\stackrel{\epsilon}{ o} q'$ and $w\in L_{\mathcal A}(q')$ then $w\in L_{\mathcal A}(q)$

We then define

$$L(\mathcal{A}) = L_{\mathcal{A}}(q_0)$$

Language of an NFA: formally

Given an NFA $\mathcal{A}=(Q,\Sigma,\delta,q_0,F)$ we define $L_{\mathcal{A}}:Q\to\Sigma^*$ inductively as follows:

- If $q \in F$ then $\lambda \in L_{\mathcal{A}}(q)$
- If $q \stackrel{a}{\to} q'$ and $w \in L_{\mathcal{A}}(q')$ then $aw \in L_{\mathcal{A}}(q)$
- ullet If $q\stackrel{\epsilon}{ o} q'$ and $w\in L_{\mathcal A}(q')$ then $w\in L_{\mathcal A}(q)$

We then define

$$L(A) = L_A(q_0)$$

Example a, b \mathcal{B}_1 b $L(\mathcal{B}_1) = ?$

$$L(\mathcal{B}_1) = \{w \in \{a,b\}^* : w \text{ ends with } b\}$$

$$L(\mathcal{B}_2) = ?$$

$$\textit{L}(\mathcal{B}_2) = \{a,b\}^*$$

Example

Find \mathcal{B}_3 such that $L(\mathcal{B}_3) = \emptyset$

 $\rightarrow (q_0)$

Find \mathcal{B}_4 such that $L(\mathcal{B}_4) = \{\lambda\}$

Example

Find \mathcal{B}_3 such that $L(\mathcal{B}_3) = \emptyset$

 \mathcal{B}_3

Find \mathcal{B}_4 such that $L(\mathcal{B}_4) = \{\lambda\}$

Example

Find \mathcal{B}_3 such that $L(\mathcal{B}_3) = \emptyset$

 \mathcal{B}_3

Find \mathcal{B}_4 such that $L(\mathcal{B}_4) = \{\lambda\}$

 \mathcal{B}_4

Example

Find \mathcal{B}_5 such that $L(\mathcal{B}_5) = \{w \in \{a,b\}^* : \text{second-last symbol is } b\}$

Example

Find \mathcal{B}_5 such that $L(\mathcal{B}_5) = \{w \in \{a,b\}^* : \text{second-last symbol is } b\}$

Clearly for any DFA \mathcal{A} there is an NFA \mathcal{B} such that $L(\mathcal{A}) = L(\mathcal{B})$.

Theorem

For any NFA \mathcal{B} there is a DFA \mathcal{A} such that $L(\mathcal{A}) = L(\mathcal{B})$

Proof sketch: (Subset construction)

Given $\mathcal{B} = (Q, \Sigma, \delta, q_0, F)$, construct $\mathcal{A} = (Q', \Sigma, \delta', q'_0, F')$ as follows:

- Q' = Pow(Q)
- $q_0' = \{q_0\}$
- $\bullet \ F' = \{X \in Q' : X \cap F \neq \emptyset\}$

Intuitively: A keeps track of all the possible states B could be in after seeing a given sequence of symbols.

Clearly for any DFA \mathcal{A} there is an NFA \mathcal{B} such that $L(\mathcal{A}) = L(\mathcal{B})$.

Theorem

For any NFA \mathcal{B} there is a DFA \mathcal{A} such that $L(\mathcal{A}) = L(\mathcal{B})$.

Proof sketch: (Subset construction)

Given $\mathcal{B}=(Q,\Sigma,\delta,q_0,F)$, construct $\mathcal{A}=(Q',\Sigma,\delta',q_0',F')$ as follows:

- Q' = Pow(Q)
- $\delta'(X, a) = \{ q' \in Q : \exists q \in X, q'' \in Q.q \xrightarrow{a} q'' \xrightarrow{\epsilon}^* q' \}$
- $q_0' = \{q_0\}$
- $\bullet \ F' = \{X \in Q' : X \cap F \neq \emptyset\}$

Intuitively: A keeps track of all the possible states B could be in after seeing a given sequence of symbols.

Clearly for any DFA \mathcal{A} there is an NFA \mathcal{B} such that $L(\mathcal{A}) = L(\mathcal{B})$.

Theorem

For any NFA \mathcal{B} there is a DFA \mathcal{A} such that $L(\mathcal{A}) = L(\mathcal{B})$.

Proof sketch: (Subset construction)

Given $\mathcal{B} = (Q, \Sigma, \delta, q_0, F)$, construct $\mathcal{A} = (Q', \Sigma, \delta', q'_0, F')$ as follows:

- $Q' = \mathsf{Pow}(Q)$
- $\delta'(X, a) = \{ q' \in Q : \exists q \in X, q'' \in Q.q \xrightarrow{a} q'' \xrightarrow{\epsilon^*} q' \}$
- $q_0' = \{q_0\}$
- $\bullet \ F' = \{X \in Q' : X \cap F \neq \emptyset\}$

Intuitively: A keeps track of all the possible states B could be in after seeing a given sequence of symbols.

δ'	a	Ь
Ø	Ø	Ø
$\{q_0\}$	$\{q_0\}$	
$\{q_1\}$	$\{q_2\}$	
$\{q_2\}$	Ø	
$\{q_0,q_1\}$	$\{q_0, q_2\}$	
$\{q_0,q_2\}$	$\{q_0\}$	
$\{q_1,q_2\}$	$\{q_2\}$	
$\{q_0, q_1, q_2\}$	$\{q_0, q_2\}$	

δ'	a	Ь
Ø	Ø	Ø
$\{q_0\}$	$\{q_0\}$	
$\{q_1\}$	$\{q_2\}$	
$\{q_2\}$	Ø	
$\{q_0,q_1\}$	$\{q_0, q_2\}$	
$\{q_0,q_2\}$	$\{q_0\}$	
$\{q_1,q_2\}$	$\{q_2\}$	
$\{q_0, q_1, q_2\}$	$\{q_0, q_2\}$	

δ'	а	Ь
Ø	Ø	Ø
$\{q_0\}$	$\{q_0\}$	$\{q_0,q_1\}$
$\{q_1\}$	$\{q_2\}$	
$\{q_2\}$	Ø	
$\{q_0,q_1\}$	$\{q_0, q_2\}$	
$\{q_0, q_2\}$	$\{q_0\}$	
$\{q_1,q_2\}$	$\{q_2\}$	
$\{q_0, q_1, q_2\}$	$\{q_0, q_2\}$	

δ'	а	Ь
Ø	Ø	Ø
$\{q_0\}$	$\{q_0\}$	$\{q_0,q_1\}$
$\{q_1\}$	$\{q_2\}$	$\{q_2\}$
$\{q_2\}$	Ø	
$\{q_0,q_1\}$	$\{q_0, q_2\}$	
$\{q_0, q_2\}$	$\{q_0\}$	
$\{q_1,q_2\}$	$\{q_2\}$	
$\{q_0, q_1, q_2\}$	$\{q_0, q_2\}$	

cl	1	,
δ'	а	b
Ø	Ø	Ø
$\{q_0\}$	$\{q_0\}$	$\{q_0,q_1\}$
$\{q_1\}$	$\{q_{2}\}$	$\{q_2\}$
$\{q_2\}$	Ø	Ø
$\{q_0,q_1\}$	$\{q_0, q_2\}$	
$\{q_0, q_2\}$	$\{q_0\}$	
$\{q_1,q_2\}$	$\{q_2\}$	
$\{q_0, q_1, q_2\}$	$\{q_0, q_2\}$	

δ'	a	Ь
Ø	Ø	Ø
$\{q_0\}$	$\{q_0\}$	$\{q_0,q_1\}$
$\{q_1\}$	$\{q_2\}$	$\{q_2\}$
$\{q_2\}$	Ø	Ø
$\{q_0,q_1\}$	$\{q_0, q_2\}$	$\{q_0,q_1,q_2\}$
$\{q_0,q_2\}$	$\{q_0\}$	
$\{q_1,q_2\}$	$\{q_2\}$	
$\{q_0, q_1, q_2\}$	$\{q_0, q_2\}$	

δ'	a	Ь
Ø	Ø	Ø
$\{q_0\}$	$\{q_0\}$	$\{q_0,q_1\}$
$\{q_1\}$	$\{q_2\}$	$\{q_2\}$
$\{q_2\}$	Ø	Ø
$\{q_0,q_1\}$	$\{q_0, q_2\}$	$\{q_0,q_1,q_2\}$
$\{q_0,q_2\}$	$\{q_0\}$	$\{q_0,q_1\}$
$\{q_1,q_2\}$	$\{q_2\}$	
$\{q_0, q_1, q_2\}$	$\{q_0, q_2\}$	

δ'	а	Ь
Ø	Ø	Ø
$\{q_0\}$	$\{q_0\}$	$\{q_0,q_1\}$
$\{q_1\}$	$\{q_2\}$	$\{q_2\}$
$\{q_2\}$	Ø	Ø
$\{ extbf{q}_0, extbf{q}_1\}$	$\{q_0, q_2\}$	$\{q_0,q_1,q_2\}$
$\{q_0,q_2\}$	$\{q_0\}$	$\{q_0,q_1\}$
$\{q_1,q_2\}$	$\{q_2\}$	$\{q_2\}$
$\{q_0, q_1, q_2\}$	$\{q_0, q_2\}$	

δ'	а	Ь
Ø	Ø	Ø
$\{q_0\}$	$\{q_0\}$	$\{q_0,q_1\}$
$\{q_1\}$	$\{q_2\}$	$\{q_2\}$
$\{q_2\}$	Ø	Ø
$\{q_0,q_1\}$	$\{q_0, q_2\}$	$\{q_0,q_1,q_2\}$
$\{q_0,q_2\}$	$\{q_0\}$	$\{ extbf{q}_0, extbf{q}_1\}$
$\{q_1,q_2\}$	$\{q_2\}$	$\{q_2\}$
$\{q_0, q_1, q_2\}$	$\{q_0, q_2\}$	$\{q_0, q_1, q_2\}$

δ'		a	b
Ø	Α	Α	A
$\{q_{0}\}$	В	В	Ε
$\{q_1\}$	C	D	D
$\{q_2\}$	D	A	Α
$\{q_0,q_1\}$	Ε	F	Н
$\{q_0, q_2\}$	F	В	Ε
$\{q_1,q_2\}$	G	D	D
$\{q_0, q_1, q_2\}$	Н	F	Н

δ'		a	b
Ø	Α	Α	A
$\{q_0\}$	В	В	Ε
$\{q_1\}$	С	D	D
$\{q_2\}$	D	A	Α
$\{q_0,q_1\}$	Ε	F	Η
$\{q_0, q_2\}$	F	В	Ε
$\{q_1,q_2\}$	G	D	D
$\{q_0, q_1, q_2\}$	Н	F	Н

δ'		a	b
Ø	Α	Α	Α
$\{q_0\}$	В	В	Ε
$\{q_1\}$	C	D	D
$\{q_2\}$	D	A	Α
$\{q_0,q_1\}$	Ε	F	Η
$\{q_0, q_2\}$	F	В	Ε
$\{q_1, q_2\}$	G	D	D
$\{q_0, q_1, q_2\}$	Н	F	Н

Theorem

- For any NFA with n states there exists a DFA with at most 2ⁿ states that accepts the same language
- There exist NFAs with n states such that the smallest DFA that accepts the same language has at least 2ⁿ states.

Summary

- Recap
- Deterministic Finite Automata
- Non-deterministic Finite Automata
- Regular languages
- Regular expressions
- Mealy machines

Regular languages

A language $L \subseteq \Sigma^*$ is **regular** if there is some DFA $\mathcal A$ such that $L = L(\mathcal A)$

Equivalently, there is some NFA \mathcal{B} such that $L = L(\mathcal{B})$

Regular languages

A language $L\subseteq \Sigma^*$ is **regular** if there is some DFA $\mathcal A$ such that $L=L(\mathcal A)$

Equivalently, there is some NFA \mathcal{B} such that $L = L(\mathcal{B})$

Non-regular languages

Are there languages which are not regular? Yes

"Simple" counting argument: there are uncountably many languages, and only countably many DFAs

An example of a non-regular language: $\{0^n1^n : n \in \mathbb{N}\}$ Intuitively: need arbitrary large memory to "remember" the number of 0's

Non-regular languages

Are there languages which are not regular? Yes

"Simple" counting argument: there are uncountably many languages, and only countably many DFAs

An example of a non-regular language: $\{0^n1^n : n \in \mathbb{N}\}$ Intuitively: need arbitrary large memory to "remember" the number of 0's

Non-regular languages

Are there languages which are not regular? Yes

"Simple" counting argument: there are uncountably many languages, and only countably many DFAs

An example of a non-regular language: $\{0^n1^n:n\in\mathbb{N}\}$ Intuitively: need arbitrary large memory to "remember" the number of 0's

Theorem

If L is a regular language then $L^c = \Sigma^* \setminus L$ is a regular language.

Proof:

- ullet Let $\mathcal{A}=(Q,\Sigma,\delta,q_0,F)$ be a DFA such that $L(\mathcal{A})=L$
- Consider $\mathcal{A}' = (Q, \Sigma, \delta, q_0, Q \setminus F)$
- For any word $w \in \Sigma^*$, the corresponding run in $\mathcal A$ is unique, so:
 - If $w \in L(\mathcal{A})$ then $w \notin L(\mathcal{A}')$, and
 - If $w \notin L(A)$ then $w \in L(A')$
- Therefore $L(A') = \Sigma^* \setminus L(A) = L^c$

NB

Theorem

If L is a regular language then $L^c = \Sigma^* \setminus L$ is a regular language.

Proof:

- Let $\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$ be a DFA such that $L(\mathcal{A}) = L$
- Consider $\mathcal{A}' = (Q, \Sigma, \delta, q_0, Q \setminus F)$
- For any word $w \in \Sigma^*$, the corresponding run in \mathcal{A} is unique, so:
 - If $w \in L(A)$ then $w \notin L(A')$, and
 - If $w \notin L(A)$ then $w \in L(A')$,
- Therefore $L(A') = \Sigma^* \setminus L(A) = L^c$

NB

Theorem

If L is a regular language then $L^c = \Sigma^* \setminus L$ is a regular language.

Proof:

- Let $\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$ be a DFA such that $L(\mathcal{A}) = L$
- Consider $\mathcal{A}' = (Q, \Sigma, \delta, q_0, Q \setminus F)$
- For any word $w \in \Sigma^*$, the corresponding run in A is unique, so:
 - If $w \in L(A)$ then $w \notin L(A')$, and
 - If $w \notin L(A)$ then $w \in L(A')$,
- Therefore $L(A') = \Sigma^* \setminus L(A) = L^c$

NB

Theorem

If L is a regular language then $L^c = \Sigma^* \setminus L$ is a regular language.

Proof:

- Let $\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$ be a DFA such that $\mathcal{L}(\mathcal{A}) = \mathcal{L}$
- Consider $\mathcal{A}' = (Q, \Sigma, \delta, q_0, Q \setminus F)$
- For any word $w \in \Sigma^*$, the corresponding run in $\mathcal A$ is unique, so:
 - If $w \in L(A)$ then $w \notin L(A')$, and
 - If $w \notin L(A)$ then $w \in L(A')$,
- Therefore $L(\mathcal{A}') = \Sigma^* \setminus L(\mathcal{A}) = L^c$

NB

Theorem

If L is a regular language then $L^c = \Sigma^* \setminus L$ is a regular language.

Proof:

- Let $\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$ be a DFA such that $\mathcal{L}(\mathcal{A}) = \mathcal{L}$
- Consider $\mathcal{A}' = (Q, \Sigma, \delta, q_0, Q \setminus F)$
- For any word $w \in \Sigma^*$, the corresponding run in $\mathcal A$ is unique, so:
 - If $w \in L(A)$ then $w \notin L(A')$, and
 - If $w \notin L(A)$ then $w \in L(A')$,
- Therefore $L(A') = \Sigma^* \setminus L(A) = L^c$

NB

Theorem

If L is a regular language then $L^c = \Sigma^* \setminus L$ is a regular language.

Proof:

- Let $\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$ be a DFA such that $L(\mathcal{A}) = L$
- Consider $\mathcal{A}' = (Q, \Sigma, \delta, q_0, Q \setminus F)$
- For any word $w \in \Sigma^*$, the corresponding run in \mathcal{A} is unique, so:
 - If $w \in L(A)$ then $w \notin L(A')$, and
 - If $w \notin L(A)$ then $w \in L(A')$,
- Therefore $L(\mathcal{A}') = \Sigma^* \setminus L(\mathcal{A}) = L^c$

NB

Theorem

If L_1 and L_2 are regular languages, then $L_1 \cup L_2$ is regular.

- ullet Let \mathcal{B}_1 and \mathcal{B}_2 be NFAs such that $\mathit{L}(\mathcal{B}_1) = \mathit{L}_1$ and $\mathit{L}(\mathcal{B}_2) = \mathit{L}_2$
- Construct an NFA \mathcal{B} by having a new start state with ϵ -transitions to the start states of \mathcal{B}_1 and \mathcal{B}_2
- Consider $w \in L_1 \cup L_2$:
 - If $w \in L_1$ then there is a run in \mathcal{B}_1 , and hence in \mathcal{B} , which ends in a final state
 - If $w \in L_2$ then there is a run in \mathcal{B}_2 , and hence in \mathcal{B} , which ends in a final state
 - In either case $w \in L(\mathcal{B})$
- Conversely, any accepting run in \mathcal{B} will be either an accepting run in \mathcal{B}_1 or in \mathcal{B}_2 ; so if $w \in L(\mathcal{B})$ then $w \in L_1 \cup L_2$

Theorem

If L_1 and L_2 are regular languages, then $L_1 \cup L_2$ is regular.

- ullet Let \mathcal{B}_1 and \mathcal{B}_2 be NFAs such that $L(\mathcal{B}_1)=L_1$ and $L(\mathcal{B}_2)=L_2$
- Construct an NFA \mathcal{B} by having a new start state with ϵ -transitions to the start states of \mathcal{B}_1 and \mathcal{B}_2
- Consider $w \in L_1 \cup L_2$:
 - If $w \in L_1$ then there is a run in \mathcal{B}_1 , and hence in \mathcal{B} , which ends in a final state
 - If $w \in L_2$ then there is a run in \mathcal{B}_2 , and hence in \mathcal{B} , which ends in a final state
 - In either case $w \in L(\mathcal{B})$
- Conversely, any accepting run in \mathcal{B} will be either an accepting run in \mathcal{B}_1 or in \mathcal{B}_2 ; so if $w \in L(\mathcal{B})$ then $w \in L_1 \cup L_2$

Theorem

If L_1 and L_2 are regular languages, then $L_1 \cup L_2$ is regular.

- Let \mathcal{B}_1 and \mathcal{B}_2 be NFAs such that $L(\mathcal{B}_1) = L_1$ and $L(\mathcal{B}_2) = L_2$
- Construct an NFA \mathcal{B} by having a new start state with ϵ -transitions to the start states of \mathcal{B}_1 and \mathcal{B}_2
- Consider $w \in L_1 \cup L_2$:
 - If $w \in L_1$ then there is a run in \mathcal{B}_1 , and hence in \mathcal{B} , which ends in a final state
 - If $w \in L_2$ then there is a run in \mathcal{B}_2 , and hence in \mathcal{B} , which ends in a final state
 - In either case $w \in L(\mathcal{B})$
- Conversely, any accepting run in \mathcal{B} will be either an accepting run in \mathcal{B}_1 or in \mathcal{B}_2 ; so if $w \in L(\mathcal{B})$ then $w \in L_1 \cup L_2$

Theorem

If L_1 and L_2 are regular languages, then $L_1 \cup L_2$ is regular.

- ullet Let \mathcal{B}_1 and \mathcal{B}_2 be NFAs such that $\mathcal{L}(\mathcal{B}_1) = \mathcal{L}_1$ and $\mathcal{L}(\mathcal{B}_2) = \mathcal{L}_2$
- Construct an NFA \mathcal{B} by having a new start state with ϵ -transitions to the start states of \mathcal{B}_1 and \mathcal{B}_2
- Consider $w \in L_1 \cup L_2$:
 - If $w \in L_1$ then there is a run in \mathcal{B}_1 , and hence in \mathcal{B} , which ends in a final state
 - If $w \in L_2$ then there is a run in \mathcal{B}_2 , and hence in \mathcal{B} , which ends in a final state
 - In either case $w \in L(\mathcal{B})$
- Conversely, any accepting run in \mathcal{B} will be either an accepting run in \mathcal{B}_1 or in \mathcal{B}_2 ; so if $w \in L(\mathcal{B})$ then $w \in L_1 \cup L_2$

Theorem

If L_1 and L_2 are regular languages, then $L_1 \cup L_2$ is regular.

- ullet Let \mathcal{B}_1 and \mathcal{B}_2 be NFAs such that $\mathcal{L}(\mathcal{B}_1) = \mathcal{L}_1$ and $\mathcal{L}(\mathcal{B}_2) = \mathcal{L}_2$
- Construct an NFA \mathcal{B} by having a new start state with ϵ -transitions to the start states of \mathcal{B}_1 and \mathcal{B}_2
- Consider $w \in L_1 \cup L_2$:
 - If $w \in L_1$ then there is a run in \mathcal{B}_1 , and hence in \mathcal{B} , which ends in a final state
 - If $w \in L_2$ then there is a run in \mathcal{B}_2 , and hence in \mathcal{B} , which ends in a final state
 - In either case $w \in L(\mathcal{B})$
- Conversely, any accepting run in \mathcal{B} will be either an accepting run in \mathcal{B}_1 or in \mathcal{B}_2 ; so if $w \in L(\mathcal{B})$ then $w \in L_1 \cup L_2$

Intersection

Theorem

If L_1 and L_2 are regular languages, then $L_1 \cap L_2$ is regular.

$$L_1 \cap L_2 = (L_1^c \cup L_2^c)^c$$

Intersection

Theorem

If L_1 and L_2 are regular languages, then $L_1 \cap L_2$ is regular.

$$L_1 \cap L_2 = (L_1^c \cup L_2^c)^c$$

Recall for languages X and Y: $X \cdot Y = \{xy : x \in X, y \in Y\}$

Theorem

If L_1 and L_2 are regular languages, then $L_1 \cdot L_2$ is regular.

Proof:

123

- Let \mathcal{B}_1 and \mathcal{B}_2 be NFAs such that $L(\mathcal{B}_1) = L_1$ and $L(\mathcal{B}_2) = L_2$
- Construct an NFA \mathcal{B} by adding ϵ -transitions from the final states of \mathcal{B}_1 to the start state of \mathcal{B}_2 . Let the start state of \mathcal{B} be the start state of \mathcal{B}_1 ; and let the final states of \mathcal{B} be the final states of \mathcal{B}_2 .
- Any word in $L_1 \cdot L_2$ can be written as wv with $w \in L_1$ and $v \in L_2$. w has an accepting run in \mathcal{B}_1 and v has an accepting run in \mathcal{B}_2 , so wv has an accepting run in \mathcal{B} .
- Conversely, any word w with an accepting run in \mathcal{B} can be broken up into an accepting run in \mathcal{B}_1 followed by an accepting run in \mathcal{B}_2 . Thus w can be broken up into two words w = xy where $x \in L_1$ and $y \in L_2$.

Recall for languages X and Y: $X \cdot Y = \{xy : x \in X, y \in Y\}$

Theorem

If L_1 and L_2 are regular languages, then $L_1 \cdot L_2$ is regular.

- Let \mathcal{B}_1 and \mathcal{B}_2 be NFAs such that $L(\mathcal{B}_1) = L_1$ and $L(\mathcal{B}_2) = L_2$
- Construct an NFA \mathcal{B} by adding ϵ -transitions from the final states of \mathcal{B}_1 to the start state of \mathcal{B}_2 . Let the start state of \mathcal{B} be the start state of \mathcal{B}_1 ; and let the final states of \mathcal{B} be the final states of \mathcal{B}_2 .
- Any word in $L_1 \cdot L_2$ can be written as wv with $w \in L_1$ and $v \in L_2$. w has an accepting run in \mathcal{B}_1 and v has an accepting run in \mathcal{B}_2 , so wv has an accepting run in \mathcal{B} .
- Conversely, any word w with an accepting run in \mathcal{B} can be broken up into an accepting run in \mathcal{B}_1 followed by an accepting run in \mathcal{B}_2 . Thus w can be broken up into two words w = xy where $x \in L_1$ and $y \in L_2$.

Recall for languages X and Y: $X \cdot Y = \{xy : x \in X, y \in Y\}$

Theorem

If L_1 and L_2 are regular languages, then $L_1 \cdot L_2$ is regular.

- Let \mathcal{B}_1 and \mathcal{B}_2 be NFAs such that $L(\mathcal{B}_1) = L_1$ and $L(\mathcal{B}_2) = L_2$
- Construct an NFA \mathcal{B} by adding ϵ -transitions from the final states of \mathcal{B}_1 to the start state of \mathcal{B}_2 . Let the start state of \mathcal{B} be the start state of \mathcal{B}_1 ; and let the final states of \mathcal{B} be the final states of \mathcal{B}_2 .
- Any word in $L_1 \cdot L_2$ can be written as wv with $w \in L_1$ and $v \in L_2$. w has an accepting run in \mathcal{B}_1 and v has an accepting run in \mathcal{B}_2 , so wv has an accepting run in \mathcal{B} .
- Conversely, any word w with an accepting run in \mathcal{B} can be broken up into an accepting run in \mathcal{B}_1 followed by an accepting run in \mathcal{B}_2 . Thus w can be broken up into two words w = xv where $x \in L_1$ and $v \in L_2$.

Recall for languages X and Y: $X \cdot Y = \{xy : x \in X, y \in Y\}$

Theorem

If L_1 and L_2 are regular languages, then $L_1 \cdot L_2$ is regular.

- ullet Let \mathcal{B}_1 and \mathcal{B}_2 be NFAs such that $\mathcal{L}(\mathcal{B}_1) = \mathcal{L}_1$ and $\mathcal{L}(\mathcal{B}_2) = \mathcal{L}_2$
- Construct an NFA \mathcal{B} by adding ϵ -transitions from the final states of \mathcal{B}_1 to the start state of \mathcal{B}_2 . Let the start state of \mathcal{B} be the start state of \mathcal{B}_1 ; and let the final states of \mathcal{B} be the final states of \mathcal{B}_2 .
- Any word in $L_1 \cdot L_2$ can be written as wv with $w \in L_1$ and $v \in L_2$. w has an accepting run in \mathcal{B}_1 and v has an accepting run in \mathcal{B}_2 , so wv has an accepting run in \mathcal{B} .
- Conversely, any word w with an accepting run in \mathcal{B} can be broken up into an accepting run in \mathcal{B}_1 followed by an accepting run in \mathcal{B}_2 . Thus w can be broken up into two words w = xy where $x \in L_1$ and $y \in L_2$.

Recall for languages X and Y: $X \cdot Y = \{xy : x \in X, y \in Y\}$

Theorem

If L_1 and L_2 are regular languages, then $L_1 \cdot L_2$ is regular.

- ullet Let \mathcal{B}_1 and \mathcal{B}_2 be NFAs such that $\mathcal{L}(\mathcal{B}_1) = \mathcal{L}_1$ and $\mathcal{L}(\mathcal{B}_2) = \mathcal{L}_2$
- Construct an NFA \mathcal{B} by adding ϵ -transitions from the final states of \mathcal{B}_1 to the start state of \mathcal{B}_2 . Let the start state of \mathcal{B} be the start state of \mathcal{B}_1 ; and let the final states of \mathcal{B} be the final states of \mathcal{B}_2 .
- Any word in $L_1 \cdot L_2$ can be written as wv with $w \in L_1$ and $v \in L_2$. w has an accepting run in \mathcal{B}_1 and v has an accepting run in \mathcal{B}_2 , so wv has an accepting run in \mathcal{B} .
- Conversely, any word w with an accepting run in \mathcal{B} can be broken up into an accepting run in \mathcal{B}_1 followed by an accepting run in \mathcal{B}_2 . Thus w can be broken up into two words w = xy where $x \in L_1$ and $y \in L_2$.

Recall for a language X:

 $X^* = \{w : w \text{ can be made up from 0 or more words in } X\}$

Theorem

If L is regular languages, then L^* is regular.

- Let \mathcal{B} be an NFA such that $L(\mathcal{B}) = L$
- Construct an NFA \mathcal{B}' by:
 - creating a new start state which is accepting;
 - ullet adding an ϵ -transition from the new start state to the start state of ${\cal B}$
 - adding ϵ -transitions from the final states of $\mathcal B$ to the new start state.
- Similar arguments as before show that $L(\mathcal{B}') = L(\mathcal{B})^*$

Recall for a language X:

 $X^* = \{w : w \text{ can be made up from 0 or more words in } X\}$

Theorem

If L is regular languages, then L^* is regular.

- Let \mathcal{B} be an NFA such that $L(\mathcal{B}) = L$
- ullet Construct an NFA ${\cal B}'$ by:
 - creating a new start state which is accepting;
 - ullet adding an ϵ -transition from the new start state to the start state of ${\cal B}$
 - adding ϵ -transitions from the final states of $\mathcal B$ to the new start state.
- Similar arguments as before show that $L(\mathcal{B}') = L(\mathcal{B})^*$

Recall for a language X:

 $X^* = \{w : w \text{ can be made up from 0 or more words in } X\}$

Theorem

If L is regular languages, then L^* is regular.

- Let \mathcal{B} be an NFA such that $L(\mathcal{B}) = L$
- Construct an NFA \mathcal{B}' by:
 - creating a new start state which is accepting;
 - adding an ϵ -transition from the new start state to the start state of ${\cal B}$
 - adding ϵ -transitions from the final states of $\mathcal B$ to the new start state.
- ullet Similar arguments as before show that $L(\mathcal{B}') = L(\mathcal{B})^*$

Recall for a language X:

 $X^* = \{ w : w \text{ can be made up from 0 or more words in } X \}$

Theorem

If L is regular languages, then L^* is regular.

- Let \mathcal{B} be an NFA such that $L(\mathcal{B}) = L$
- Construct an NFA \mathcal{B}' by:
 - creating a new start state which is accepting;
 - adding an ϵ -transition from the new start state to the start state of ${\cal B}$
 - adding ϵ -transitions from the final states of $\mathcal B$ to the new start state.
- Similar arguments as before show that $L(\mathcal{B}') = L(\mathcal{B})^*$

Regular operations

Concatenation, union, and Kleene star are collectively known as the **regular operations**.

Recall:

The definition of a program in \mathcal{L}^+ :

$$P ::= (x := e) | \varphi | P_1; P_2 | P_1 + P_2 | P_1$$

Regular operations

Concatenation, union, and Kleene star are collectively known as the **regular operations**.

Recall:

The definition of a program in \mathcal{L}^+ :

$$P ::= (x := e) | \varphi | P_1; P_2 | P_1 + P_2 | P_1^*$$

Summary

- Recap
- Deterministic Finite Automata
- Non-deterministic Finite Automata
- Regular languages
- Regular expressions
- Mealy machines

Regular expressions

Given a finite set Σ , a **regular expression over** Σ **(RE)** is defined recursively as follows:

- ∅ is a regular expression
- ullet is a regular expression
- a is a regular expression for all $a \in \Sigma$
- If E_1 and E_2 are regular expressions, then E_1E_2 is a regular expression
- If E_1 and E_2 are regular expressions, then $E_1 + E_2$ is a regular expression
- If E is a regular expression, then E^* is a regular expression

We use parentheses to disambiguate REs, though \ast binds tighter than concatenation, which binds tighter than +.

Examples

Example

The following are regular expressions over $\Sigma = \{0, 1\}$:

- Ø
- 101 + 010
- $(\epsilon + 10)*01$

