## INDUCTIVE LOGIC PROGRAMMING

COMP34341 Robot Software Architectures

#### Least General Generalisation

E.g.

The result of heating this bit of iron to 419°C was that it melted.

The result of heating that bit of iron to 419°C was that it melted.

The result of heating any bit of iron to 419°C was that it melted.

We can formalise this as:

melted(bit1) :- bit\_of\_iron(bit1), heated(bit1, 419).

melted(bit2) :- bit\_of\_iron(bit2), heated(bit2, 419).

 $melted(X) := bit_of_iron(X), heated(X, 419).$ 

## Subsumption

The method of least general generalisations is based on the idea of *subsumption*.

A clause C1 subsumes, or is more general than, another clause C2 if there is a substitution  $\sigma$  such that C2 $\supseteq$ C1 $\sigma$ .

The least general generalisation of

|     | p(g(a), a)  | (4) |
|-----|-------------|-----|
| and | p(g(b), b)  | (5) |
| is  | p(g(X), X). | (6) |

Under the substitution  $\{a/X\}$  (6) is equivalent to (4).

Under the substitution  $\{b/X\}$  (6) is equivalent to (5).

#### Inverse Substitution

The least general generalisation of

p(g(a), a)

and p(g(b), b)

is p(g(X), X).

and results in the inverse substitution {X/{a, b}}

## LGG of Clauses

q(g(a)) :- p(g(a), h(b)), r(h(b), c), r(h(b), e).

q(x) := p(x, y), r(y, z), r(h(w), z).

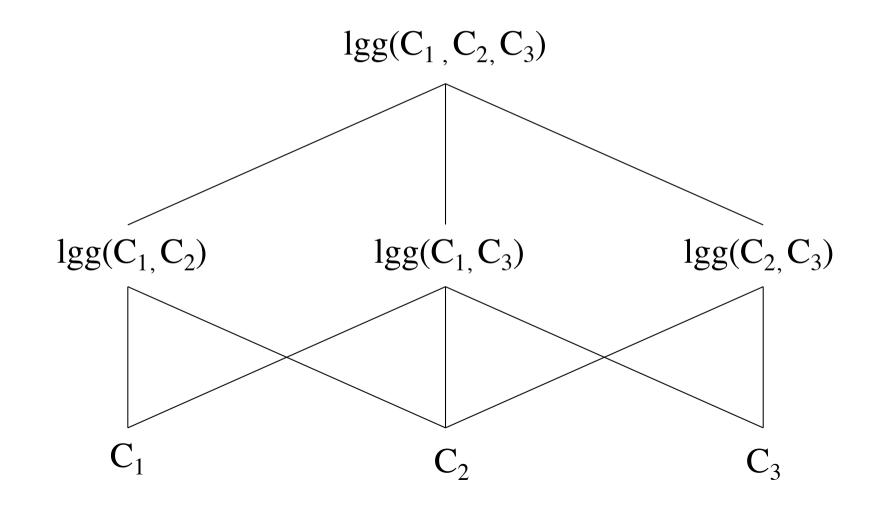
results in an LGG:

q(X) := p(X, Y), r(Y, Z), r(h(U), Z), r(Y, V), r(h(U), V)

with inverse substitutions:

{X/(g(a), x), Y/(h(b), y), Z/(c, z), U/(b, w), V/(e, z)}

#### LGG of sets of clauses



# Relative Least General Generalisation (RLGG)

- Apply background knowledge to *saturate* example clauses.
- Find LGG of saturated clauses

heavier(A, B) :- denser(A, B), larger(A, B).

fall\_together(hammer, feather) :same\_height(hammer, feather), denser(hammer, feather), larger(hammer, feather). fall\_together(hammer, feather) :same\_height(hammer, feather), denser(hammer, feather), larger(hammer, feather), heavier(hammer, feather).

# Background Knowledge

- Background knowledge can assist learning
- It must be possible to interpret a concept description as a recognition procedure.
- If the description of chair has been learned, then it should be possible to refer to chair in other concept descriptions.
- E.g. the chair "program" will recognise the chairs in an office scene.

#### Horn Clauses Recognising Patterns

Suppose we have a set of clauses:

$$C1 \leftarrow P11 \land P12$$
 (1)

$$C2 \leftarrow P21 \land P22 \land C1$$
 (2)

and an instance:

$$P11 \land P12 \land P21 \land P22 \tag{3}$$

Clause (1) recognises the first two terms in expression (3) reducing it to

 $P21 \land P22 \land C1$ 

Clause (2) reduces this to C2.

I.e. clauses (1) and (2) recognise expression (3) as the description of an instance of concept C2.

## GOLEM

- LGG is very inefficient for large numbers of examples
- GOLEM uses a *hill-climbing* as an approximation
  - Randomly select pairs of examples
  - Find LGG's and pick the one that covers most positive examples and excludes all negative examples, call it **S**.
    - Randomly select another set of examples
    - Find all LGG's with S
    - Pick best one
    - Repeat as long as cover of positive examples increases.

#### Generalised Subsumption

Simple subsumption is unable to take advantage of background information which may assist generalisation.

Suppose we are given two instances of a concept cuddly\_pet,

$$cuddly_pet(X) \leftarrow fluffy(X) \land dog(X)$$
 (7)

$$cuddly_pet(X) \leftarrow fluffy(X) \land cat(X)$$
 (8)

Suppose we also know the following:

$$pet(X) \leftarrow dog(X)$$
 (9)

$$pet(X) \leftarrow cat(X)$$
 (10)

#### Limitations of Subsumption

According to subsumption, the least general generalisation of (7) and (8) is:

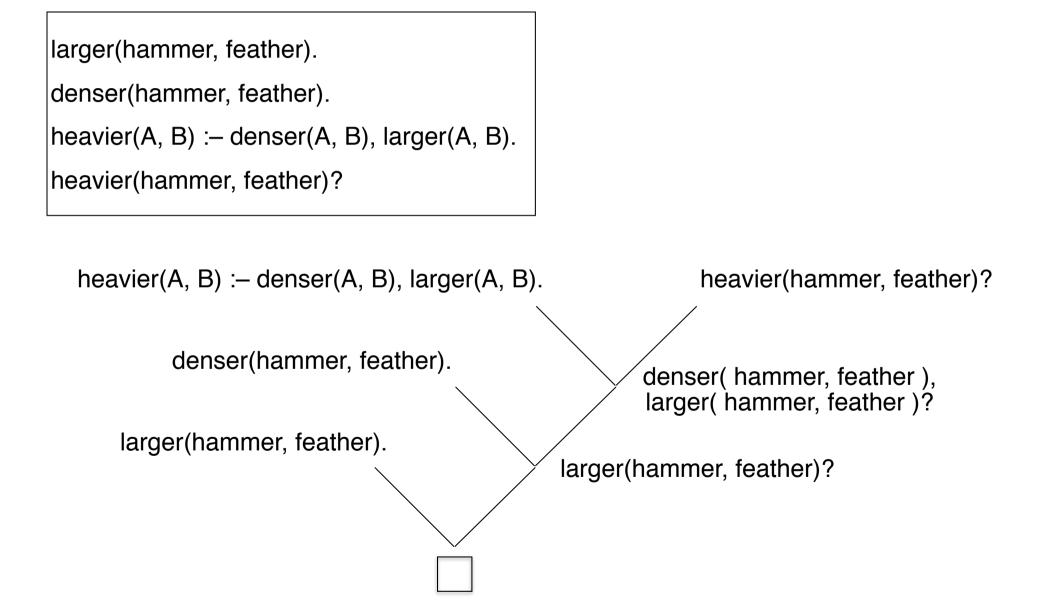
$$cuddly_pet(X) \leftarrow fluffy(X)$$
 (11)

This is an over-generalisation.

A better one is:

 $cuddly\_pet(X) \leftarrow fluffy(X) \land pet(X)$  (12)

## **Resolution Proofs**



# Inverting Resolution

- Resolution provides an efficient means of deriving a solution to a problem, giving a set of axioms which define the task environment.
- Resolution takes two terms and resolves them into a most general unifier.
- Anti-unification finds the *least general generalisation* of two terms.

## Absorption

Given a set of clauses, the body of one of which is completely contained in the bodies of the others, such as:

 $X \leftarrow A \land B \land C \land D \land E$ 

$$Y \leftarrow A \land \ B \land \ C$$

we can hypothesise:

$$X \leftarrow Y \land D \land E$$

$$\mathsf{Y} \leftarrow \mathsf{A} \land \mathsf{B} \land \mathsf{C}$$

#### Saturation

Given a set of clauses, the body of one of which is completely contained in the bodies of the others, such as:

$$X \leftarrow A \land B \land C \land D \land E$$

$$Y \leftarrow A \land \ B \land \ C$$

we can *saturate* the first clause:

$$X \leftarrow A \land B \land C \land D \land E \land Y$$

## Saturation Example

Suppose we are given two instances of a concept cuddly\_pet,

```
cuddly_pet(X) \leftarrow fluffy(X) \land dog(X)
cuddly_pet(X) \leftarrow fluffy(X) \land cat(X)
```

and:

```
pet(X) \leftarrow dog(X)
pet(X) \leftarrow cat(X)
```

Saturated clauses are:

```
\begin{aligned} & \text{cuddly\_pet(X)} \gets & \text{fluffy}(X) \land & \text{dog}(X) \land & \text{pet}(X) \\ & \text{cuddly\_pet}(X) \gets & \text{fluffy}(X) \land & \text{cat}(X) \land & \text{pet}(X) \end{aligned}
```

LGG is

```
cuddly\_pet(X) \gets fluffy(X) \land pet(X)
```

#### Intra-construction

This is the distributive law of Boolean equations. Intra-construction takes a group of rules all having the same head, such as:

 $X \leftarrow B \land \ C \land \ D \land \ E$ 

 $X \leftarrow A \land \ B \land \ D \land \ F$ 

and replaces them with:

$$X \leftarrow B \land D \land Z$$
$$Z \leftarrow C \land E$$
$$Z \leftarrow A \land F$$

Intra-construction automatically creates a new term in its attempt to simplify descriptions.

#### Problems with Incremental Learning

- Experiments can never validate a world model.
- Experiments usually involve noisy data, they can cause damage to the environment, they may cause misleading side-effects.
- A robot may have an incomplete theory and incorrect model.
- Need to be able to handle exceptions.
- Need to be able to repair knowledge base.
- If concepts are represented by Horn clauses, we can use a program debugger (declarative diagnosis).

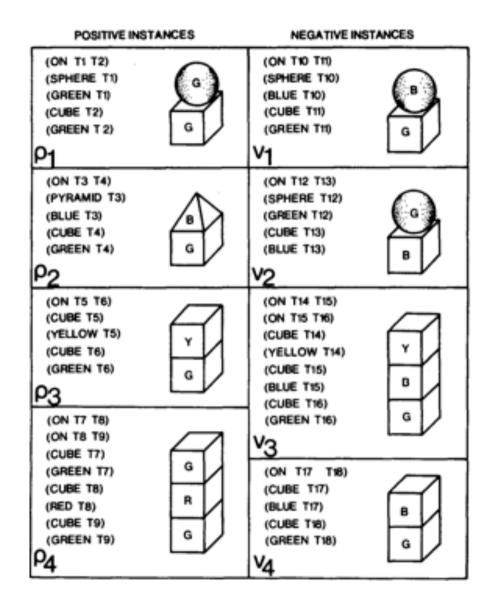
Exceptions

Multi-level Counterfactuals

- Form a cover for +ve examples
- If -ve examples are also covered, for a new cover of -ve examples and add it as an exception
- If +ve examples are excluded now, reverse process



2. (ON .X .Y)(GREEN .Y)(CUBE .Y)~((BLUE .X) ~(PYRAMID .X))



## Exceptions or Noise?

- If there is noise, then exceptions will start to track noise, causing, "over-fitting".
- Must have a stopping criterion that prevents clause from growing too much.
- Some -ve examples may still be covered and some +ve examples may not.
- Use *Minimum Description Length* heuristic.

#### Minimum Description Length

- Devise an encoding that maps a theory (set of clauses) into a bit string.
- Also need an encoding for examples.
- Number of bits required to encode theory should not exceed number of bits to encode +ve examples.

## Compaction

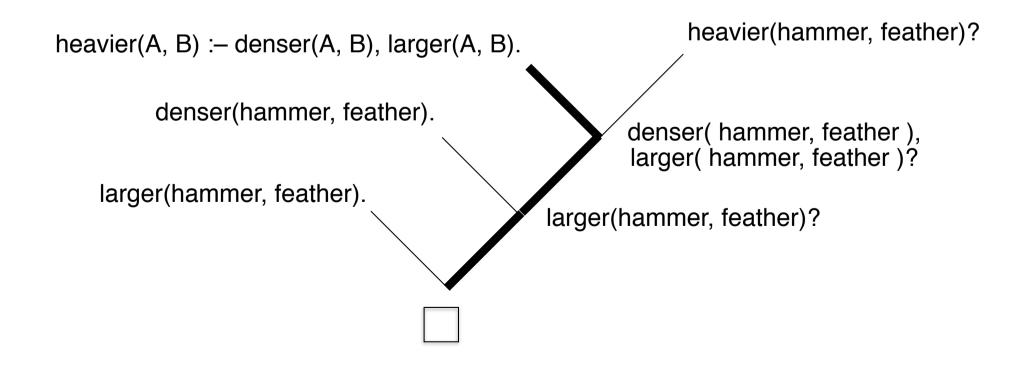
- Use a measure of compaction to guide search.
- More than one compaction operator applicable at any time.
- A measure is applied to each rule to determine which one will result in the greatest compaction.
- The measure of compaction is the reduction in the number of symbols in the set of clauses after applying an operator.
- Each operator has an associated formula for computing this reduction.
- Best-first search.

# Repairing Theories: MIS

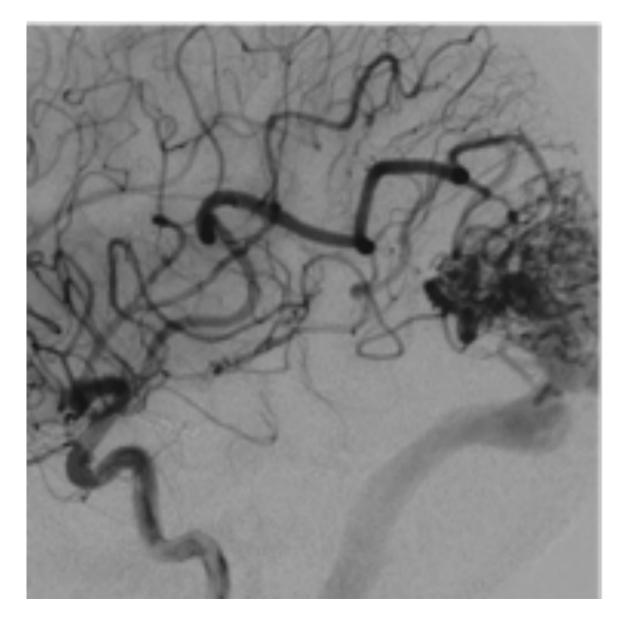
Set the theory T to { } repeat Examine the next example repeat while the theory T is too general do Specialise it by applying contradiction backtracing and remove from T the refuted hypothesis while the theory is too specific do Generalise it by adding to Trefinements of previously refuted hypotheses until the conjecture T is neither too general nor too specific with respect to the known facts Output T forever

## Contradiction Backtracing

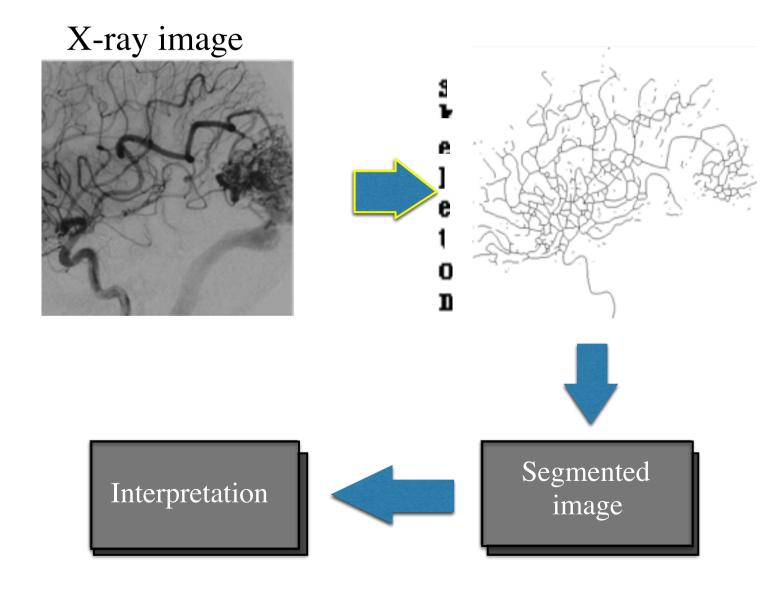
- If a clause is too general, it may recognise instances that it should not.
- Backtracing retreats along proof tree, testing each clause to determine if it is in error.



#### What is this?



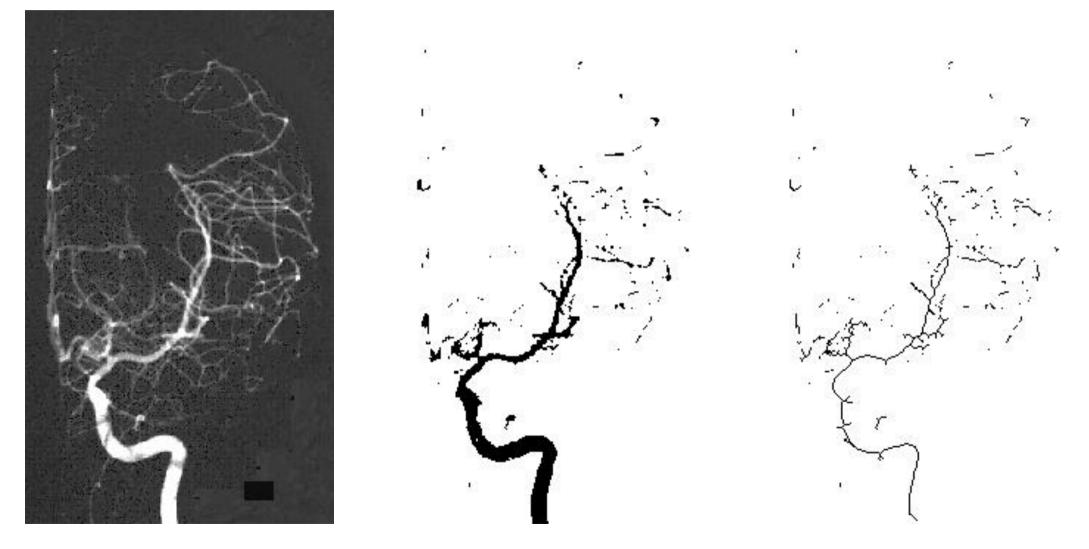
# X-ray Angiography



# Interpreting Images

- Grey-scale x-ray image thresholded to obtain a blackand-white image.
- Black-and-white image skeletonised to reduce thick vessels to lines only a single pixel wide.
- Skeleton traced to join pixels into segments of blood vessels.
- Segmented skeleton used to guide further processing of grey-scale image to obtain diameters and intensity values of each blood vessel segment.

## Stages of processing

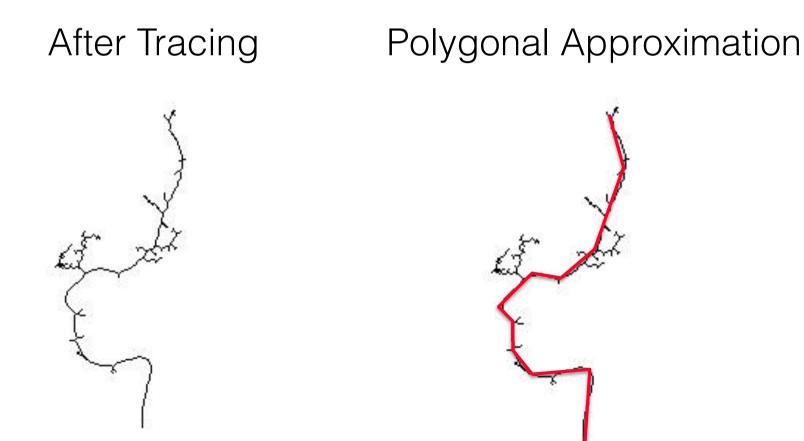


Original X-ray

After thresholding

After Thinning

# Stages of Processing



# Learning

- Much knowledge exists in text books and anatomical atlases.
- But, there is an enormous range of variations in human anatomy.
- Learning can capture variations.
- Only have small number of labelled examples.
- Example require complex relational descriptions.

# Output of low-level processing

```
internal_carotid_artery(mb1, 1).
segment(1, mb1, n, 40, 130, [2]).
segment(2, mb1, w, 40, 144, [3]).
segment(3, mb1, nw, 35, 135, [4, 5]).
segment(4, mb1, n, 40, 50, [6, 7]).
segment(6, mb1, ne, 20, 170, [8, 9]).
segment(5, mb1b1, e, 10, 100, []).
segment(7, mb1b2, w, 5, 125, []).
segment(8, mb1b3, e, 18, 90, []).
```

# Background Knowledge

- Need to augment raw data with background knowledge about
  - turns
  - branches
  - Intensities

#### Saturated Example

internal carotid artery(mb1, mb1 1) :segment(mb1 1, mb1, n, 40, 130, [mb1 2]), segment(mb1 2, mb1, w, 40, 144, [mb1 3]), segment(mb1\_3, mb1, nw, 35, 135, [mb1\_4, mb1\_5]), segment(mb1 4, mb1, n, 40, 50, [mb1 6, mb1 7]), segment(mb1\_5, mb1b1, e, 10, 100, []), segment(mb1 6, mb1, ne, 20, 170, [mb1 8, mb1 9]), segment(mb1\_7, mb1b2, w, 5, 125, []), segment(mb1 8, mb1b3, e, 18, 90, []), segment(mb1\_9, mb1b4, n, 15, 100, []), max(diameter, mb1, mb1, 4, 40), max(intensity, mb1, mb1 6, 170), min(diameter, mb1, mb1, 6, 20), min(intensity, mb1, mb1, 4, 50), left\_turn(mb1, mb1\_1, mb1\_2), right\_turn(mb1, mb1\_2, mb1\_3), right turn(mb1, mb1 3, mb1 4), right turn(mb1, mb1 4, mb1 6), left branch(mb1, mb1 4, mb1 7), left\_branch(mb1, mb1\_6, mb1\_9), right branch(mb1, mb1 3, mb1 5), right\_branch(mb1, mb1\_6, mb1\_8), left turns(mb1, 1), right\_turns(mb1, 3), left\_branches(mb1, 2), right\_branches(mb1, 2).

# A Small Sample

- 10 X-ray images of anterior-posterior view of Internal Carotid Artery
- 11 negative examples from images of other vessels and other views.
- Including background knowledge to recognise
  - left turns and right turns in blood vessel
  - left and right branches to other blood vessels
  - number of left and right turns
  - number of left and right branches

#### Least General Generalisation

internal\_carotid\_artery(\_0, \_1) : segment(\_1, \_0, n, \_2, \_3, [\_4 | \_5]),
 left\_turns(\_0, \_6),
 right\_turns(\_0, \_7),
 left\_branches(\_0, 2),
 right\_branches(\_0, 2).