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Least General 
Generalisation

E.g.

The result of heating this bit of iron to 419˚C was that it melted.

The result of heating that bit of iron to 419˚C was that it melted.

The result of heating any bit of iron to 419˚C was that it melted.

We can formalise this as:

melted(bit1) :– bit_of_iron(bit1), heated(bit1, 419).

melted(bit2) :– bit_of_iron(bit2), heated(bit2, 419).

melted(X) :– bit_of_iron(X), heated(X, 419).



Subsumption
The method of least general generalisations is based on the idea of 
subsumption.

A clause C1 subsumes, or is more general than, another clause C2 if there is a 
substitution σ such that C2 ⊇ C1σ.

The least general generalisation of

p(g(a), a) (4)

and p(g(b), b) (5)

is p(g(X), X). (6)

Under the substitution {a/X} (6) is equivalent to (4).

Under the substitution {b/X} (6) is equivalent to (5).



Inverse Substitution
The least general generalisation of

p(g(a), a)

and p(g(b), b)

is p(g(X), X).

and results in the inverse substitution {X/{a, b}}



LGG of Clauses
 q(g(a)) :– p(g(a), h(b)), r(h(b), c), r(h(b), e).

 q(x) :– p(x, y), r(y, z), r(h(w), z).

results in an LGG:

 q(X) :– p(X, Y) , r(Y, Z) , r(h(U), Z) , r(Y, V) , r(h(U), V)

with inverse substitutions:

 {X/(g(a), x), Y/(h(b), y), Z/(c, z), U/(b, w), V/(e, z)}



LGG of sets of clauses

C1 C2 C3

lgg(C1, C2) lgg(C1, C3) lgg(C2, C3)

lgg(C1 , C2, C3)



Relative Least General 
Generalisation (RLGG)

• Apply background knowledge to saturate example 
clauses. 

• Find LGG of saturated clauses

heavier(A, B) :– denser(A, B), larger(A, B).

fall_together(hammer, feather) :-
same_height(hammer, feather), 
denser(hammer, feather), 
larger(hammer, feather).

fall_together(hammer, feather) :-
same_height(hammer, feather), 
denser(hammer, feather), 
larger(hammer, feather), 
heavier(hammer, feather).



Background Knowledge
• Background knowledge can assist learning 

• It must be possible to interpret a concept 
description as a recognition procedure. 

• If the description of chair has been learned, then it 
should be possible to refer to chair in other 
concept descriptions. 

• E.g. the chair “program” will recognise the chairs in 
an office scene.



Horn Clauses 
Recognising Patterns

Suppose we have a set of clauses:

C1 ← P11 ∧  P12 (1)

C2 ← P21 ∧  P22 ∧  C1 (2)

and an instance:

P11 ∧ P12 ∧ P21 ∧ P22 (3)

Clause (1) recognises the first two terms in expression (3) reducing it to

P21 ∧  P22 ∧  C1

Clause (2) reduces this to C2.

I.e. clauses (1) and (2) recognise expression (3) as the description of an instance 
of concept C2.



GOLEM
• LGG is very inefficient for large numbers of examples 

• GOLEM uses a hill-climbing as an approximation 

• Randomly select pairs of examples 

• Find LGG’s and pick the one that covers most positive examples and 
excludes all negative examples, call it S. 

• Randomly select another set of examples 

• Find all LGG’s with S 

• Pick best one 

• Repeat as long as cover of positive examples increases.



Generalised Subsumption
Simple subsumption is unable to take advantage of background information 
which may assist generalisation.

Suppose we are given two instances of a concept cuddly_pet,

cuddly_pet(X) ← fluffy(X) ∧  dog(X) (7)

cuddly_pet(X) ← fluffy(X) ∧  cat(X) (8)

Suppose we also know the following:

pet(X) ← dog(X) (9)

pet(X) ← cat(X) (10)



Limitations of Subsumption
According to subsumption, the least general 
generalisation of (7) and (8) is:

cuddly_pet(X) ← fluffy(X) (11)

This is an over-generalisation.

A better one is:

cuddly_pet(X) ← fluffy(X) ∧  pet(X) (12)



Resolution Proofs

heavier(hammer, feather)?heavier(A, B) :– denser(A, B), larger(A, B).

denser(hammer, feather).

larger(hammer, feather).

larger(hammer, feather).
denser(hammer, feather).
heavier(A, B) :– denser(A, B), larger(A, B).
heavier(hammer, feather)?

denser( hammer, feather ),
larger( hammer, feather )?

larger(hammer, feather)?



Inverting Resolution
• Resolution provides an efficient  means of deriving 

a solution to a problem, giving a set of axioms 
which define the task environment. 

• Resolution takes two terms and resolves them into 
a most general unifier. 

• Anti-unification finds the least general 
generalisation of two terms.



Absorption
Given a set of clauses, the body of one of which is completely contained in the 

bodies of the others, such as:

X ← A ∧  B ∧  C ∧  D ∧  E

Y ← A ∧  B ∧  C

we can hypothesise:

X ← Y ∧  D ∧  E

Y ← A ∧  B ∧  C



Saturation

Given a set of clauses, the body of one of which is completely contained in the 

bodies of the others, such as:

X ← A ∧  B ∧  C ∧  D ∧  E

Y ← A ∧  B ∧  C

we can saturate the first clause:

X ← A ∧  B ∧  C ∧  D ∧  E ∧  Y



Saturation Example
Suppose we are given two instances of a concept cuddly_pet,

cuddly_pet(X) ← fluffy(X) ∧  dog(X

cuddly_pet(X) ← fluffy(X) ∧  cat(X)

and:

pet(X) ← dog(X)

pet(X) ← cat(X)

Saturated clauses are:

cuddly_pet(X) ← fluffy(X) ∧  dog(X) ∧  pet(X)

cuddly_pet(X) ← fluffy(X) ∧  cat(X) ∧  pet(X)

LGG is

cuddly_pet(X) ← fluffy(X) ∧ pet(X)



Intra-construction
This is the distributive law of Boolean equations. Intra-construction takes a group 
of rules all having the same head, such as:

X ← B ∧  C ∧  D ∧  E

X ← A ∧  B ∧  D ∧  F

and replaces them with:

X ← B ∧  D ∧  Z

Z ← C ∧  E

Z ← A ∧  F

Intra-construction automatically creates a new term in its attempt to simplify 
descriptions.



Problems with Incremental 
Learning

• Experiments can never validate a world model. 

• Experiments usually involve noisy data, they can cause damage 
to the environment, they may cause misleading side-effects. 

• A robot may have an incomplete theory and incorrect model. 

• Need to be able to handle exceptions. 

• Need to be able to repair knowledge base. 

• If concepts are represented by Horn clauses, we can use a 
program debugger (declarative diagnosis).



Exceptions

1. (ON .X .Y)(GREEN .Y)(CUBE .Y)

2. (ON .X .Y)(GREEN .Y)(CUBE .Y)~((BLUE .X) ~(PYRAMID .X))

Multi-level Counterfactuals

• Form a cover for +ve examples

• If -ve examples are also covered, 
for a new cover of -ve examples 
and add it as an exception

• If +ve examples are excluded now, 
reverse process



Exceptions or Noise?
• If there is noise, then exceptions will start to track noise, 

causing, "over-fitting".

• Must have a stopping criterion that prevents clause from 
growing too much.

• Some -ve examples may still be covered and some +ve 
examples may not.

• Use Minimum Description Length heuristic.



Minimum Description Length

• Devise an encoding that maps a theory (set of 
clauses) into a bit string.

• Also need an encoding for examples.

• Number of bits required to encode theory should not 
exceed number of bits to encode +ve examples.



Compaction
• Use a measure of compaction to guide search.

• More than one compaction operator applicable at any time.

• A measure is applied to each rule to determine which one will result 
in the greatest compaction.

• The measure of compaction is the reduction in the number of 
symbols in the set of clauses after applying an operator. 

• Each operator has an associated formula for computing this 
reduction.

• Best-first search.



Repairing Theories: MIS
Set the theory T to { }
repeat

Examine the next example
repeat

while the theory T is too general do
Specialise it by applying
contradiction backtracing and remove
from T  the refuted hypothesis

while the theory is too specific do
Generalise it by adding to T
refinements of previously refuted 
hypotheses

until the conjecture T is neither too general nor too
specific with respect to the known facts

Output T
forever



Contradiction Backtracing

heavier(hammer, feather)?heavier(A, B) :– denser(A, B), larger(A, B).

denser(hammer, feather).

larger(hammer, feather).

• If a clause is too general, it may recognise instances that it should not. 

• Backtracing retreats along proof tree, testing each clause to 
determine if it is in error.

denser( hammer, feather ),
larger( hammer, feather )?

larger(hammer, feather)?



What is this?



X-ray Angiography
X-ray image 

Interpretation
Segmented

image



Interpreting Images
• Grey-scale x-ray image thresholded to obtain a black-

and-white image. 

• Black-and-white image skeletonised to reduce thick 
vessels to lines only a single pixel wide. 

• Skeleton traced to join pixels into segments of blood 
vessels. 

• Segmented skeleton used to guide further processing 
of grey-scale image to obtain diameters and intensity 
values of each blood vessel segment. 



Stages of processing

Original X-ray After thresholding After Thinning



Stages of Processing

After Tracing Polygonal Approximation



Learning
• Much knowledge exists in text books and 

anatomical atlases. 

• But, there is an enormous range of variations in 
human anatomy. 

• Learning can capture variations. 

• Only have small number of labelled examples. 

• Example require complex relational descriptions.



Output of low-level 
processing

internal_carotid_artery(mb1, 1).
segment(1, mb1, n, 40, 130, [2]).
segment(2, mb1, w, 40, 144, [3]).
segment(3, mb1, nw, 35, 135, [4, 5]).
segment(4, mb1, n, 40, 50, [6, 7]).
segment(6, mb1, ne, 20, 170, [8, 9]).
segment(5, mb1b1, e, 10, 100, []).
segment(7, mb1b2, w, 5, 125, []).
segment(8, mb1b3, e, 18, 90, []).
segment(9, mb1b4, n, 15, 100, []).



Background Knowledge

• Need to augment raw data with background 
knowledge about 
• turns 

• branches 

• Intensities



Saturated Example
internal_carotid_artery(mb1, mb1_1) :- 
        segment(mb1_1, mb1, n, 40, 130, [mb1_2]), 
        segment(mb1_2, mb1, w, 40, 144, [mb1_3]), 
        segment(mb1_3, mb1, nw, 35, 135, [mb1_4, mb1_5]), 
        segment(mb1_4, mb1, n, 40, 50, [mb1_6, mb1_7]), 
        segment(mb1_5, mb1b1, e, 10, 100, []), 
        segment(mb1_6, mb1, ne, 20, 170, [mb1_8, mb1_9]), 
        segment(mb1_7, mb1b2, w, 5, 125, []), 
        segment(mb1_8, mb1b3, e, 18, 90, []), 
        segment(mb1_9, mb1b4, n, 15, 100, []), 
        max(diameter, mb1, mb1_4, 40), 
        max(intensity, mb1, mb1_6, 170), 
        min(diameter, mb1, mb1_6, 20), 
        min(intensity, mb1, mb1_4, 50), 
        left_turn(mb1, mb1_1, mb1_2), 
        right_turn(mb1, mb1_2, mb1_3), 
        right_turn(mb1, mb1_3, mb1_4), 
        right_turn(mb1, mb1_4, mb1_6), 
        left_branch(mb1, mb1_4, mb1_7), 
        left_branch(mb1, mb1_6, mb1_9), 
        right_branch(mb1, mb1_3, mb1_5), 
        right_branch(mb1, mb1_6, mb1_8), 
        left_turns(mb1, 1), 
        right_turns(mb1, 3), 
        left_branches(mb1, 2), 
        right_branches(mb1, 2).



A Small Sample
• 10 X-ray images of anterior-posterior view of Internal 

Carotid Artery 

• 11 negative examples from images of other vessels and 
other views. 

• Including background knowledge to recognise 
• left turns and right turns in blood vessel 

• left and right branches to other blood vessels 

• number of left and right turns 

• number of left and right branches



Least General 
Generalisation

internal_carotid_artery(_0, _1) :– 

 segment(_1, _0, n, _2, _3, [_4 | _5]), 

 left_turns(_0, _6), 

 right_turns(_0, _7), 

 left_branches(_0, 2), 

 right_branches(_0, 2).


