
Assembly

Programming (III)

Lecturer: Sri Parameswaran

Notes by: Annie Guo

Dr. Hui Wu

1

Lecture overview

 Stack and stack operations

 Functions and function calls

 Calling conventions

2

Stack

 What is stack?

 A data structure in which the data item that is Last In is First

Out (LIFO)

 In AVR, a stack is implemented as a block of

consecutive bytes in the SRAM memory

 A stack has at least two parameters:

 Bottom

 Stack pointer

3

Bottom

Bottom-n

SP

Stack Bottom

 The stack usually grows from higher addresses

to lower addresses

 The stack bottom is the location with the highest

address in the stack

 In AVR, 0x0200 is the lowest address for stack
 i.e. in AVR,

 stack bottom >=0x0200

4

SP

RAMEND

0x0200

Stack Pointer

 In AVR, the stack pointer, SP, is an I/O register pair,

SPH:SPL, they are defined in the device definition file

 m2560def.inc

 Default value of the stack pointer is 0x0000.

Therefore programmers have to initialize a stack

before use it.

 The stack pointer always points to the top of the

stack

 Definition of the top of the stack varies:

 The location of Last-In element;

 E.g. in 68K

 The location available for the next element to be stored

 E.g. in AVR
5

Stack Operations

 There are two stack operations:

 push

 pop

6

Bottom

SP

Bottom

SP

Bottom

SP

push
pop

PUSH instruction

 Syntax: push Rr

 Operands: Rr{r0, r1, …, r31}

 Operation: (SP)  Rr

 SP  SP –1

 Words: 1

 Cycles: 2

7

POP instruction

 Syntax: pop Rd

 Operands: Rd{r0, r1, …, r31}

 Operation: SP  SP +1

 Rd  (SP)

 Words: 1

 Cycles: 2

8

Stack and Functions

 Stack is used in function/subroutine calls.

 Functions are used

 In top-down design

 Conceptual decomposition - easy to design

 For modularity

 Readability and maintainability

 For reuse

 Economy - common code with parameters; design

once and use many times

9

C code example

10

// int parameters b & e,
// returns an integer

unsigned int pow(unsigned int b, unsigned int e) {
 unsigned int i, p; // local variables
 p = 1;
 for (i = 0; i < e; i++) // p = be
 p = p * b;
 return p; // return value of the function
}

int main(void) {
 unsigned int m, n;
 m = 2;
 n = 3;
 m = pow(m, n);
 return 0;
}

C code example (cont.)

 In this program:

 Caller

 main

 Callee

 pow

 Passed parameters

 b, e

 Return value/type

 p/integer

11

Function Call

 A function call involves

 Program flow control between caller and callee

 target/return addresses

 Value passing

 parameters/return values

 There are two calling conventions for

parameter passing

12

Calling Conventions

 Passing by value

 Pass the value of an actual parameter to the

callee

 Not efficient for structures and arrays

 Need to pass the value of each element in the

structure or array

 Passing by reference

 Pass the address of the actual parameter to the

callee

 Efficient for structures and array passing
13

Passing by value: example

 C program

 14

void swap(int x, int y){ // the swap(x, y)
 int temp = x; // does not work
 x = y; // since the new x
 y = temp; // y values are not
} // copied back
int main(void) {
 int a = 1, b = 2;
 swap(a, b);
 printf(‚a=%d, b=%d‛, a, b)
 return 0;
}

Passing by reference: example
 C program

15

void swap(int *px, int *py) { // call by reference
 int temp; // allows callee to change
 temp = *px // the caller, since the
 *px = *py; // ‚referenced‛ memory
 *py = temp; // is altered
}
int main(void) {
 int a = 1, b = 2;
 swap(&a, &b);
 printf(‚a=%d, b=%d‛, a, b)
 return 0;
}

Register Conflicts

 If a register is used in both caller and callee

functions and the caller needs its old value

after the callee returns, then a register

conflict occurs.

 Compilers or assembly programmers need to

check for register conflicts.

 Need to save conflict registers on the stack.

 Caller or callee or both can save conflict

registers.

 In WINAVR, callee saves some conflict registers.

16

Passing Parameters and

Return Values

 May use general registers to store part of

actual parameters and push the rest of

parameters on the stack.

 WINAVR uses general registers r8 ~ r25 to store

actual parameters

 Actual parameters are eventually stored on the

stack to free registers.

 The return value needs be stored in

designated registers

 WINAVR uses r25:r24 to store the return value.

17

Stack Frames and Function

calls

 Each function call creates a new stack frame

on the stack.

 The stack frame occupies varied amount of

space and has an associated pointer, called

the stack frame pointer.

 The stack frame space is freed when the

function returns.

 What’s inside a stack frame?

18

Typical Stack Frame Contents

 Return address

 Used when the function returns

 Conflict registers

 Need to restore the old contents of these

registers when the function returns

 One conflict register is the stack frame pointer

 Parameters (arguments)

 Local variables

19

Implementation

Considerations

 Local variables and parameters need be stored

contiguously on the stack for easy accesses.

 In which order the local variables or parameters stored

on the stack? In the order that they appear in the

program from left to right? Or the reverse order?

 WINAVR C compiler uses the reverse order.

 The stack pointer points to either the base (starting

address) or the top of the stack frame

 Points to the top of the stack frame if the stack grows

downwards. Otherwise, points to the base of the stack frame

(Why?)

 WINAVR uses Y (r29: r28) as a stack frame register.

 20

A Sample Stack Frame

Structure for AVR

21

Stack Frame

for main()

 Return Address

 Conflict Registers

 Local Variable n

 …

 Local variable 1

Parameter m

…

Parameter 1

Empty

int main(void)

{ …

 foo(arg1, arg2, …, argm);

}

void foo(arg1, arg2, …, argm)

{

 int var1, var2, …, varn;

 …

}

Y

Stack

frame for

foo()

RAMEND

A Template for Caller

Caller:

 Before calling the callee, store actual

parameters in designated registers.

 Call the callee.

 Using instructions for subroutine call

 rcall, icall, call.

22

Relative call to subroutine

 Syntax: rcall k

 Operands: -2K  k < 2K

 Operation: stack  PC+1, SP  SP-2

 PC  PC+k+1

 Words: 1

 Cycles: 3

 For devices with 16-bit PC

 23

A Template for Callee

Callee:

 Prologue

 Function body

 Epilogue

24

A Template for Callee (Cont.)

Prologue:

 Store conflict registers, including the stack frame register
Y, on the stack by using push instruction

 Reserve space for local variables and passed
parameters

 Update the stack pointer and stack frame pointer Y to
point to the top of its stack frame

 Pass the actual parameters to the formal parameters on
the stack

Function body:

 Do the normal task of the function on the stack frame
and general purpose registers. 25

A Template for Callee (Cont.)

Epilogue:

 Store the return value in designated registers r25:r24.

 De-allocate the stack frame

 De-allocate the space for local variables and parameters by

updating the stack pointer SP.

 SP = SP + the size of all parameters and local variables.

 Using out instruction

 Restore conflict registers from the stack by using pop instruction

 The conflict registers must be popped in the reverse order that they

are pushed on the stack.

 The stack frame register of the caller is also restored.

 Return to the caller by using ret instruction

 26

Return from subroutine

 Syntax: ret

 Operands: none

 Operation: SP  SP+1, PC  (SP),

 SP  SP+1

 Words: 1

 Cycles: 4

 For devices with 16-bit PC

 27

An Example
 C program

28

// int parameters b & e,
// returns an integer
unsigned int pow(unsigned int b, unsigned int e) {
 unsigned int i, p; // local variables
 p = 1;
 for (i = 0; i < e; i++) // p = be
 p = p*b;
 return p; // return value of the function
}

int main(void) {
 unsigned int m, n;
 m = 2;
 n = 3;
 m = pow(m, n);
 return 0;
}

Stack frames for main() and

pow()

29

n

m

Return address

r28

r29

. . .

p

i

e

b

RAMEND

Stack frame

pointer Y for

main()

Stack frame

pointer Y for

foo()

Local

variables

Parameters

Conflict registers

Y (r29:r28) etc.

High address for high byte

Parameter passing

30

main

pow

r21:r20

r23:r22

r25:r24

n e

b m

p

An example
 Assembly program

31

.include "m2560def.inc"

.def zero = r15 ; To store constant value 0

; Multiplication of two 2-byte unsigned numbers with a 2-byte result.
; All parameters are registers, @5:@4 should be in the form: rd+1:rd,
; where d is the even number, and they are not r1 and r0.
; operation: (@5:@4) = (@1:@0) * (@3:@2)

.macro mul2 ; a * b
 mul @0, @2 ; al * bl
 movw @5:@4, r1:r0
 mul @1, @2 ; ah * bl
 add @5, r0
 mul @0, @3 ; bh * al
 add @5, r0
.endmacro
 ; continued

An example
 Assembly program

32

; continued
main:
 ldi YL, low(RAMEND-4) ; 4 bytes to store local variables.
 ldi YH, high(RAMEND-4) ; Assume an integer is 2 bytes.
 out SPH, r29 ; Adjust stack pointer to point
 out SPL, r28 ; to the new stack top.

 ; Function body of ‘main’
 ldi r24, low(2) ; m = 2;
 ldi r25, high(2)
 std Y+1, r24
 std Y+2, r25

 ldi r24, low(3) ; n = 3;
 ldi r25, high(3)
 std Y+3, r24
 std Y+4, r25
 ; continued

An example

 Assembly program

33

; continued
 ; Prepare parameters for function call.
 ldd r20, Y+3 ; r21:r20 hold the actual parameter n
 ldd r21, Y+4
 ldd r22, Y+1 ; r23:r22 hold the actual parameter m
 ldd r23, Y+2
 rcall pow ; Call subroutine ‘pow’

 std Y+1, r24 ; Store the returned result
 std Y+2, r25
end:
 rjmp end
 ; end of main function()
 ; continued

An example
 Assembly program

34

; continued
pow:
 ; prologue:
 ; r29:r28 will be used as the frame pointer
 push YL ; Save r29:r28 in the stack
 push YH
 push r16 ; Save registers used in the function body
 push r17
 push r18
 push r19
 push zero
 in YL, SPL ; Initialize the stack frame pointer value
 in YH, SPH
 sbiw Y, 8 ; Reserve space for local variables
 ; and parameters.
 ; continued

An example
 Assembly program

35

; continued
 out SPH, YH ; Update the stack pointer to
 out SPL, YL ; point to the new stack top.

 ; Pass the actual parameters.
 std Y+1, r22 ; Pass m to b.
 std Y+2, r23
 std Y+3, r20 ; Pass n to e.
 std Y+4, r21
 ; end of prologue

 ; continued

An example
 Assembly program

36

; continued
 ; Function body
 ; Use r23:r22 for i and r21:r20 for p,
 ; r25:r24 temporarily for e, and r17:r16 for b
 clr zero
 clr r23; ; Initialize i to 0
 clr r22;
 clr r21; ; Initialize p to 1
 ldi r20, 1
 ldd r25, Y+4 ; Load e to registers
 ldd r24, Y+3
 ldd r17, Y+2 ; Load b to registers
 ldd r16, Y+1
 ; continued

An example
 Assembly program

37

; continued
loop: cp r22, r24 ; compare i with e
 cpc r23, r25
 brsh done ; if i >= e
 mul2 r20,r21, r16,r17, r18,r19 ; p *= b
 movw r21:r20, r19:r18
 ; AVR does not have add immediate instructions (addi, addci)
 ; but it can be done by subtracting a negative immediate.
 ; Could adiw be used instead?
 subi r22, LOW(-1) ; i++
 sbci r23, HIGH(-1)
 rjmp loop
done:
 movw r25:r24, r21:r20
 ; End of function body

 ; continued

An example
 Assembly program

38

; continued
 ; Epilogue
 ;ldd r25, Y+8 ; the return value of p is stored in r25,r24
 ;ldd r24, Y+7
 adiw Y, 8 ; De-allocate the reserved space
 out SPH, YH
 out SPL, YL
 pop zero
 pop r19
 pop r18 ; Restore registers
 pop r17
 pop r16
 pop YH
 pop YL
 ret ; Return to main()
 ; End of epilogue
 ; End

Recursive Functions

 A recursive function is both a caller and a

callee of itself.

 Can be hard to compute the maximum stack

space needed for recursive function calls.

 Need to know how many times the function is

nested (the depth of the calls).

 And it often depends on the input values of the

function.

39

NOTE: the following section is from the

COMP2121 lecture notes by Dr. Hui Wu

An Example of Recursive

Function Calls

40

int sum(int n);

int main(void)

{

 int n = 100;

 sum(n);

 return 0;

}

int sum(int n)

{

 if (n <= 0) return 0;

 else return (n + sum(n - 1));

}

main() is the caller of

sum()

sum() is the caller

and callee of itself

Stack space

 Stack space of functions calls in a program

can be determined by call tree

41

Call Trees

 A call tree is a weighted directed tree G = (V,
E, W) where

 V={v1, v2, …, vn} is a set of nodes each of which
denotes an execution of a function;

 E={vivj: vi calls vj} is a set of directed edges
each of which denotes the caller-callee
relationship, and

 W={wi (i=1, 2, …, n): wi is the frame size of vi} is
a set of stack frame sizes.

 The maximum size of stack space needed for
the function calls can be derived from the call
tree.

42

An Example of Call Trees

43

int main(void)

{ …

 func1();

 …

 func2();

}

void func1()

{ …

 func3();

 …

}

void func2()

{ …

 func4();

 …

 func5();

 …

}

An Example of Call Trees

(Cont.)

44

main()

func2() func1()

func3() func4() func5()

10

20 60

80 10 30

The number in red beside a

function is its frame size in bytes.

Computing the Maximum

Stack Size for Function Calls

 Step 1: Draw the call tree.

 Step 2: Find the longest weighted path in

the call tree.

 The total weight of the longest weighted

path is the maximum stack size needed for

the function calls.

45

An Example

46

main()

func2() func1()

func3() func4() func5()

10

20 60

80 10 30

The longest path is main()  func1()  func3()

with the total weight of 110. So the maximum

stack space needed for this program is 110 bytes.

Fibonacci Rabbits

 Suppose a newly-born pair of rabbits, one male, one

female, are put in a field. Rabbits are able to mate at the

age of one month so that at the end of its second month

a female can produce another pair of rabbits. Suppose

that our rabbits never die and that the female always

produces one new pair (one male, one female) every

month from the second month on.

 How many pairs will there be in one year?

 Fibonacci’s Puzzle

 Italian, mathematician Leonardo of Pisa (also known as

Fibonacci) 1202.

47

Fibonacci Rabbits (Cont.)

 The number of pairs of rabbits in the field at the start of

each month is 1, 1, 2, 3, 5, 8, 13, 21, 34,

 In general, the number of pairs of rabbits in the field at

the start of month n, denoted by F(n), is recursively

defined as follows.

 F(n) = F(n - 1) + F(n - 2)

 Where F(0) = F(1) = 1.

 F(n) (n = 1, 2, …,) are called Fibonacci numbers.

48

C Solution of Fibonacci

Numbers

49

int month = 4;

int main(void)

{

 fib(month);

}

int fib(int n)

{

 if (n == 0) return 1;

 if (n == 1) return 1;

 return (fib(n - 1) + fib(n - 2));

}

AVR Assembler Solution

50

Return address

r16

r17

r28

r29

n

Empty

Frame

structure for

fib()

Y

X

X–2

X–3

X–4

X–5

X–6

X–8

r16, r17, r28 and r29

are conflict

registers.

An integer is 2

bytes long in

WINAVR

Assembly Code for main()

51

.cseg
 rjmp main
month:
 .dw 4
main:
 ; Prologue
 ldi r28, low(RAMEND)
 ldi r29, high(RAMEND)
 out SPH, r29 ; Initialise the stack pointer SP to point to
 out SPL, r28 ; the highest SRAM address
 ; End of prologue
 ldi r30, low(month << 1) ; Let Z point to month
 ldi r31, high(month << 1)
 lpm r24, Z+ ; Actual parameter 4 is stored in r25:r24
 lpm r25, Z
 rcall fib ; Call fib(4)
 ; Epilogue: no return
loopforever:
 rjmp loopforever

Assembly Code for fib()

52

fib:
 push r16 ; Prologue
 push r17 ; Save r16 and r17 on the stack
 push r28 ; Save Y on the stack
 push r29
 in r28, SPL
 in r29, SPH
 sbiw r29:r28, 2 ; Let Y point to the bottom of
 ; the stack frame
 out SPH, r29 ; Update SP so that it points to
 out SPL, r28 ; the new stack top
 std Y+1, r24 ; Pass the actual parameter
 std Y+2, r25 ; to the formal parameter
 cpi r24, 0 ; Compare n with 0
 clr r0
 cpc r25, r0
 brne L3 ; If n != 0, go to L3
 ldi r24, 1 ; n == 0
 ldi r25, 0 ; Return 1
 rjmp L2 ; Jump to the epilogue

Assembly Code for fib() (Cont.)

53

L3: cpi r24, 1 ; Compare n with 1
 clr r0
 cpc r25, r0
 brne L4 ; If n != 1 go to L4
 ldi r24, 1 ; n == 1
 ldi r25, 0 ; Return 1
 rjmp L2 ; Jump to the epilogue
L4: ldd r24, Y+1 ; n >= 2
 ldd r25, Y+2 ; Load the actual parameter n
 sbiw r25:r24, 1 ; Pass n - 1 to the callee
 rcall fib ; call fib(n - 1)
 movw r16, r24 ; Store the return value in r17:r16
 ldd r24, Y+1 ; Load the actual parameter n
 ldd r25, Y+2
 sbiw r25:r24, 2 ; Pass n - 2 to the callee
 rcall fib ; call fib(n-2)
 add r24, r16 ; r25:r25 = fib(n - 1) + fib(n - 2)
 adc r25, r17

Assembly Code for fib() (Cont.)

54

L2:
 ; Epilogue
 adiw r29:r28, 2 ; Deallocate the stack frame for fib()
 out SPH, r29 ; Restore SP
 out SPL, r28
 pop r29 ; Restore Y
 pop r28
 pop r17 ; Restore r17 and r16
 pop r16
 ret

Computing the Maximum

Stack Size

55

Step 1: Draw the call tree.
main()

fib(4)

fib(3) fib(2)

fib(2) fib(1) fib(1) fib(0)

fib(1) fib(0)

0

8

8 8

8 8

8 8

8 8

The call tree for n = 4

Computing the Maximum Stack

Size (Cont.)

56

Step 1: Find the longest weighted path.

main()

fib(4)

fib(3) fib(2)

fib(2) fib(1) fib(1) fib(0)

fib(1) fib(0)

0

8

8 8

8 8

8 8

8 8

The longest weighted path is main()  fib(4)  fib(3) fib(2) 

fib(1) with the total weight of 32. So a stack space of 32 bytes is

needed for this program.

Reading Material

 AVR ATmega2560 data sheet

 Stack, stack pointer and stack operations

57

Homework

1. Refer to the AVR Instruction Set manual,
study the following instructions:

• Arithmetic and logic instructions
 adiw

 lsl, rol

• Data transfer instructions
 movw

 pop, push

 in, out

 Program control
 rcall

 ret 58

Homework

2. In AVR, why is register Y used as the stack

frame pointer? And why is the stack frame

pointer set to point to the top of the stack

frame?

59

Homework

3. What is the difference between using

functions and using macros?

60

Homework

4. When would you use macros and when

would you use functions?

61

Homework

5. Write an assembly routine for a x 5,

where a is a 2-byte unsigned integer.

62

Homework

6. Write an assembly code for the following C program.

Assume an integer takes one byte.

63

void swap(int *px, int *py) { // Call by reference
 int temp; // allows the callee to
 temp = *px // change the caller, since
 *px = *py; // the ‚referenced‛ memory
 *py = temp; // is altered.
}
int main(void) {
 int a = 1, b = 2;
 swap(&a, &b);
 printf(‚a=%d, b=%d‛, a, b)
 return 0;
}

